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This experimental study analyzes the relationship between the dimensionality of turbulence and the
upscale or downscale nature of its energy transfers. We do so by forcing low-Rm magnetohydrodynamic
turbulence in a confined channel, while precisely controlling its dimensionality by means of an externally

applied magnetic field. We first identify a specific length scale 19 that separates smaller 3D structures from
larger quasi-2D ones. We then show that an inverse energy cascade of horizontal kinetic energy along

horizontal scales is always observable at large scales, and that it extends well into the region of 3D

structures. At the same time, a direct energy cascade confined to the smallest and strongly 3D scales is
observed. These dynamics therefore appear not to be simply determined by the dimensionality of individual
scales, nor by the forcing scale, unlike in other studies. In fact, our findings suggest that the relationship
between kinematics and dynamics is not universal and may strongly depend on the forcing and dissipating

mechanisms at play.
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Turbulence displays radically opposite dynamics,
whether it is three dimensional (3D) or two dimensional
(2D). In the former, kinetic energy follows a direct energy
cascade from the forcing scale down to the smallest scales
[1], while the latter features an inverse energy cascade from
the forcing scale up to large structures of the size of the
system [2]. It is, however, still unclear how these seemingly
irreconcilable dynamics relate to each other, whenever 2D
and 3D turbulent structures coexist. This question is all the
more crucial when dealing with real-life wall-bounded
flows, as speaking of two dimensionality only makes sense
with respect to the presence of boundaries, such as no-slip
walls. Yet, solid boundaries necessarily introduce three
dimensionality both in boundary layers and in the bulk
[3,4]. As aresult, real flows (such as oceans or atmospheres)
can only be quasi-2D rather than strictly 2D, and often
combine 2D and 3D turbulent structures [5]. The key
question that determines both transport and dissipative
properties of such flows is then how much, and which kind
of three dimensionality is required for the inverse cascade to
become direct. In other words: How do the energy transfers
relate to the topological dimensionality of turbulence?
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It is unclear whether this question has a universal answer.
For instance, compressing one dimension can yield a hybrid
configuration, in which the energy flux splits into a direct
cascade at small scales and an inverse cascade at large
scales [6], while forcing a 3D and three-component flow in a
thick fluid layer can still produce a large coherent vortex,
indicative of an upscale energy flux [7]. Furthermore, within
the respective contexts of rotating [8], and stratified rotating
quasi-2D turbulence [9], horizontal kinetic energy flows
preferentially upscale, while vertical kinetic energy flows
downscale. Finally, a subset of the nonlinear interactions of
any 3D flow is always capable of transferring kinetic energy
upscale [10].

This matter is investigated within the context of sta-
tistically steady liquid metal low-Rm magnetohydrody-
namic (MHD) turbulence in a homogeneous magnetic field
[11-13]. A significant advantage of this approach is that
the level of three dimensionality of MHD turbulence can be
controlled simply by adjusting the external magnetic field
B, [14-17]. In particular, Ref. [18] theorized that a critical
length scale separates (larger) quasi-2D from (smaller)
3D turbulent structures, by interpreting the effect of the
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solenoidal component of the Lorentz force as a “pseudo-
diffusion” of momentum in the direction of the magnetic
field. The time 7, (/) required to diffuse the momentum
of a turbulent structure of size [, over the distance /, along
By is given by 7op = (p/oB3)(1./1,)% where ¢ and p are
the fluid’s electric conductivity and density, respectively. In
the inertial range, the other competing process is inertia,
whose main effect is to redistribute kinetic energy across
turbulent structures, by means of energy transfers. It takes
place over the eddy turnover time 7,(l,)=1,/u(l,),
where u(l,) is the velocity of the structure at hand. The
scaling law for the range of action of the Lorentz force
follows from the balance between both effects [18]:

L(1) = Li\/N(LL), (1)

where N(I,,u(l;)) = 6B3l, /pu(l}) is a scale-dependent
interaction parameter. The dimensionality of a structure is
then determined with respect to no-slip walls perpendicular
to the magnetic field and distant by A, through the ratio
I,(1,)/h [19,20]. In particular, /_(I,)/h <1 implies that
velocity gradients exist in the bulk, in other words, that
the structure of size /, is 3D. Conversely, /,(1,)/h > 1
implies that the Lorentz force diffuses the momentum of the
structure of size [, over a distance much greater than /.
This process is, however, blocked by the no-slip walls. The
structure of size /| is thus quasi-2D. The critical length
scale [ separating quasi-2D and 3D structures, for which
I.(I9)/h = 1, eventually reads [18]

ﬂN oBgh \7'3 ule ))-1/3
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Increasing the applied magnetic field thus offers a con-
venient way of broadening the spectrum of quasi-2D scales.

The problem at hand was tackled experimentally
using the Flowcube [19,21-23], an experimental platform
designed to drive turbulence electrically in a 100 x 100 x
150 mm parallelepipedic vessel, filled with a GalnSn
eutectic alloy (p = 6400 kg/m?, 6 = 3.4 x 10% S/m, kin-
ematic viscosity v = 4.0 x 1077 m?/s). Turbulent motions
were induced by forcing a dc electric current /, through a
square periodic array of electrodes spaced either by [; = 5
or 15 mm located along the bottom wall [21], while
simultaneously applying a vertical and static magnetic
field Bye,, of up to 10 T (cf. Fig. 1). Two complementary
measurement methods were used to diagnose the resulting
flow. First, a fine Cartesian mesh of probes mounted flush
to the top and bottom walls along strips aligned with the e,
direction gave access to the electric potential distribution at
these walls. The spatial resolution of this method, as given
by the spacing between adjacent probes was 2.5 mm. The
signal was time sampled at 250 Hz/24-bits over 18 mn-long
continuous runs. In the limit of high Hartmann numbers

(Ha = Byh+/o/pr) and high interaction parameter, the
electric potential along the horizontal walls is a precise
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FIG. 1.

Sketch of the Flowcube.

estimate for the stream-function right outside the Hartmann
boundary layer developing along them [24]. It thus provides
both velocity components in the same planes. Second, two
ultrasound transducers were used to respectively measure
the u,(x,y,, z,,1) and u.(x,,y,,2,t) velocity profiles
through the bulk, at the fixed positions (y,, z,) and (x,,
v,), respectively. The transducers offered a spatial resolution
of ~1 mm, and a 5 Hz sampling rate. The dimensionality
of the flow was controlled through the single parameter
1.(1;)/h, where [.(I;) is the diffusion length associated to
turbulent structures of size /; and the rms of the turbulent
fluctuations measured along the bottom wall uy,, [21]. The
Reynolds number Re = uy/1/v ranged between 17 000 and
71000 throughout, which guaranteed that the turbulence
was fully developed. The Hartmann number and Magnetic
Reynolds number Rm = pgoupyh (1 referring to vacuum
permitivity), ranged between 911 and 36 400, and 0.029
and 0.12, respectively. Selected regimes achievable by the
Flowcube are given in Table I. Except for Fig. 4, the statistics
presented hereafter stem from data acquired by potential
measurements. The average operator must be understood as
an ensemble average obtained by averaging over time and
space. Statistics were computed using ~107 independent
samples, which yielded a convergence level better than 1%
for the third order moments [21].

Following Ref. [25], we describe the structure of turbu-
lence through the velocity increment u = u(x +r) —u(x),
computed from turbulent fluctuations. Because of the very
low influence from the lateral walls [21], the turbulence in
Flowcube is considered homogeneous in the horizontal
plane and axisymmetric. Hence, r and du are, respectively,
decomposedasr = r, e, + rje.;andou = éu; + éu, with
duj = (6u-e e, and su, = du — su. We shall focus on
Su | (r, e,) computed along both the top and bottom plates.

Let us start by analyzing the kinematics of the turbulence
and attempt to discriminate 3D from quasi-2D structures.
To do so, we adopt the signature function V as a scale-space
alternative to the Fourier-space 3D energy spectrum [26],
which is expressed in 2D as [27]
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TABLEI. Range of nondimensional parameters for an injected
current per electrode of 6A. Data are given for both electrode
separations /;, and a selected range of magnetic fields (cf. Ref. [21]
for more details).

[; =5 mm
By[T] 1 3 5 7 10
Up o [M/8] 0.180 0.230 0.240 0.250 0.270
Ha 3644 10930 18220 25510 36440
Re 44000 58000 60000 64000 67000
L(I;)/h 0.23 0.59 0.97 1.3 1.7
[; =15 mm
By[T] 1 3 5 7 10
Upo [M/S] 0.130 0.180 0.200 0.230 0.250
Ha 3644 10930 18220 25510 36440
Re 32000 45000 50000 57000 62000
L(I;)/h 1.3 34 5.3 6.9 9.4

Here, 6u; = [u(x + r.e,) —u(x)] - e, is the longitudinal
velocity increment measured in the horizontal plane. In
axisymmetric turbulence, quasi-2D structures are invariant
with respect to z outside the boundary layers. Their signature
function must therefore be the same whether measured
along the top or bottom walls. Conversely, any departure
from a top-bottom mirror symmetry is an indication of a 3D
structure. Figure 2 shows the scalewise distribution of
V,(ry) across horizontal structures, along the top and
bottom walls (referred to as V' and V5 respectively).
As (1;)/h increases beyond one, V'* tends to match V5,
both in shape and amplitude. Based on this observation, a
lower bound for the smallest quasi-2D scale is computed
from the location of V' (r | )’s maximum I . Interestingly,
the superposition of top and bottom energy distributions
starts at large scales and works its way through smaller and
smaller scales as /. (/;)/h increases. This behavior is in full
agreement with Eq. (1), which states that it takes a higher
field [i.e., a higher /_(/;)/h] to make smaller structures
quasi-2D. Furthermore, the critical length scale ?j_ strikingly
coincides with the scale at which Vi and V'[* depart from
each other, thus confirming its physical relevance.

Figure 3 reports the variations of ?i /1; for all operating
conditions explored against the “true” interaction parameter
N, = N(h,u$) x (I;/h)* = [I.(I;)/h)*(h/];), which mea-
sures the ratio of diffusion by the Lorentz force to inertia
at the forcing scale [28]. Here, u§ = [2V'{?(15)1$]"/? is an
estimate for the velocity at scale IS. All measurements
collapse onto a single curve, of which two parts can be

singled out. For N, < 102, 14 /1, « N,~'/3, which provides
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FIG. 2. Scalewise perpendicular energy density along horizon-
tal scales. Normalization by V2 is introduced so that the
abscissae of Figs. 2 and 5 coincide with each other (cf. properties
of V, in Ref. [27]). The vertical red lines locate I /I, for each
1.(1;)/h, with quasi-2D scales lying to their right.

an experimental confirmation of Eq. (2). For N, > 107, ?C ar
saturates towards a constant value of 0.62, indicating that
scales below this limit size cannot be quasi-2D no matter
how high N, might be. This limit likely results from the
absence of a mechanism to transfer energy to 2D scales
smaller than the energy injection scale, a phenomenon
which is not accounted for in Eq. (2).

Having identified quasi-2D and 3D regions of the scale
space, we now seek regions where energy is transferred
upscale and downscale. We first recall that the equation
governing energy transfers in statistically steady MHD
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FIG. 3. 3D to quasi-2D critical length scale /9, as a function
of the “true” interaction parameter N, = N(h, u$ ) x (I;/h)?. The
N,~'/3 region proves that the threshold between 3D and quasi-2D
structures is indeed solely controlled by a balance between the
solenoidal component of the Lorentz force and inertia.
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turbulence is the Karman-Howarth equation, which reads,
in the inhomogeneous and anisotropic case [29]

II(r) = P(r) + 7 (r) = e;(r) — &,(r). (4)

[I(r) = V, - (|6ul?6u) quantifies the flux of turbulent
kinetic energy in scale space, P(r) is the rate of production
of turbulent kinetic energy, 7 (r) is the flux of turbulent
kinetic energy in physical space (due to spatial inhomo-
geneities), € is the Joule dissipation (occurring in the bulk
and the Hartmann layers [12]), while ¢, represents viscous
dissipation. In low-Rm MHD, the energy transfers remain
confined to the usual nonlinear hydrodynamic term I1(r),
which represents a local cumulative flux of kinetic energy
exchanged between scales of size r = ||r|| and less, with
those of size r and greater [8]. More specifically, IT(r) > 0
[respectively, TI(r) < O] implies that, on average, energy
flows towards scales larger (respectively, smaller) than r,
i.e., following an inverse (respectively, direct) energy
cascade. Invoking axisymmetry, I1(r) becomes a function
of r; and r| only, and splits into the four contributions [8,9]

I =V, - {[dug?su,). (5)

where a and f independently represent L or |,
Vi =(1/ry)o, (ri), and V|- =(9,) e, None of
HH, Hﬁ, or H“ can be precisely obtained from our
measurements. Estimates for all contributions may never-
theless be computed as 1T} = <u§>1/ (u2)/l,, with I, =1;
and [ = I.(l;). Figure 4 shows all 1T, against 1.(1;)/h. The
normalization involves /,(/;) and Ey = [(u?) + (uf)]/2 to

account for the different energy levels. The only contribu-
tion to the energy transfers that strengthens, as the flow

becomes quasi-2D is ﬁi This reflects that in quasi-2D

" PO oo WO
VS 4
10°F oo® :
S| TR gpg ,
=l BA A e
= 0} A Ry @
~ A
(Ec 107 _ _ AA A 3
ot} e T e T A A 1
i it A
10 [LX Moa M Ap KA A ]
16[)

FIG. 4. Global estimates for the different contributions to I,
computed from ultrasound measurements. Regardless of the
dimensionality of the flow, the main contribution to the cascade
is TI+, which can accurately be measured using potential probes.

channel flows, (i) the vertical velocity component becomes
very small compared to the horizontal one [21,30], and
(ii) velocity gradients along the magnetic field vanish.
Consequently, any contribution to IT involving éu;; and/or
9,, must dwindle with 1.(1;)/h. In the quasi-2D limit [i.e.,

I.(I;)/h — o], IT1 coincides with IT. In any case, since [T+
remains greater than the sum of all other contributions,
whether the flow is 3D or not, Hi is representative of the
total energy transfer IL

In 3D MHD turbulence, Joule dissipation induces energy
losses at all scales. The inertial range is accordingly
reduced, and small-scale viscous dissipation is negligible
when N > 1. Conversely, quasi-2D scales only experience
significant dissipation through friction in the Hartmann
layers if their turnover time exceeds the Hartmann friction
time 7;; = h?/vHa. In other words, energy is not conserva-
tively transferred across the inertial range of MHD turbu-
lence whether up- or downscale. Hence, the energy cascade
does not necessarily incur a plateau region of constant
energy flux. The sign of I1, is, however, enough to deter-
mine the direction of the transfer, as in Refs. [3,8,9,31].
Note that none of our experiments displayed condensation
into large turbulent structures, unlike other comparable
studies [7,32,33]. This is due to a natural energy sink at
large quasi-2D scales in the form of Hartmann friction,
which always acted at an intermediate scale between the
size of the forced region and that of the domain. This
specific feature of the Flowcube ultimately enabled us to
sustain statistically steady turbulence over long times.

Figure 5 displays the horizontal transfer of horizontal
kinetic energy between horizontal scales I1{(r,), com-
puted along the top and bottom Hartmann walls (referred
to as I} and T8, respectively). The bulk of the transfers

15 x10~% , —
m g 0. | |— L(l)/h =063
’\“; = L(l)/h=1.10
10} R P L(l;)/h = 3.60 |1

05 1
10°
r L/ l;
FIG. 5. Horizontal transfers of horizontal turbulent Kinetic

energy along the top and bottom walls, showing an inverse
cascade (IT; > 0) at large scales. Counterintuitively, two dimen-
sionalization promotes a direct cascade (I} < 0) at smaller

scales. Red lines locate 1 /1;.
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occurs in the range r, /I; > 0.4, for which I15%(r,) and

IT°(r,) are overall positive, thus indicating an upscale
energy flux. The upper end of this region is dominated by
oscillations, whose wavelength is close to /;. These oscil-
lations, therefore, likely result from the spatial inhomoge-
neities introduced by the forcing pattern, and/or by the
nonrandom formation and breakup of forced vortex pairs
[23,34,35]. The floor of these oscillations lies, however,
well above noise level, which confirms, together with the
continuous nature of the signature function, that random
energy transfers add-up to an upscale flux at larger scales.
Indeed, nonrandom energy transfers would translate into
energy being exclusively localized at selected wavelengths
only. This picture is consistent with direct numerical
simulations (DNS) in periodic domains [36] showing that
the energy cascade in MHD turbulence is local and inverse at
large scales. Surprisingly, the inverse cascade extends well

below [, implying that 3D scales can also sustain an inverse
cascade. What is more, two dimensionality simultaneously
promotes a direct cascade at the lower end of the spectrum
(indicated by a negative value of IT1), at scales lying below
the saturation scale observed in Fig. 2. This behavior
confirms the presence of irreducible three dimensionality
at the smallest scales. While it is not surprising that quasi-2D
structures always undergo an inverse cascade, it is remark-
able that some 3D scales do, and that the direct cascade
affects a wider range of small scales, while two dimension-
ality is promoted. These observations contrast with DNS of
partly 2D and partly 3D turbulence [6,10,37], which feature
sharp cascade inversions at the forcing scale only. This
crucial difference may be explained by the presence of
strong Joule dissipation in our setup [31,36], and/or the
“broadband” nature of our forcing.

To conclude, this study shows that energy transfers are
not simply governed by the topological dimensionality of
turbulence, but may also depend on the mechanisms
promoting two dimensionality and/or dissipation. In par-
ticular, MHD turbulence provides a remarkable example
where an inverse energy cascade extends to topologically
3D scales. The link between turbulence kinematics and
dynamics is therefore unlikely to be universal and calls for
a new understanding.
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