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We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz) gallium
arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible.
Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic
temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of
resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately
fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide
resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces,
appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all
temperatures from 3 to 300 K.

DOI: 10.1103/PhysRevLett.120.223601

The physical origin of nanomechanical dissipation is a
topic of curiosity and debate, motivated by a vast number of
applications. Ultralow-dissipation nanomechanical resona-
tors represent a key ingredient for optomechanics, which
investigates the interaction of light and mechanical motion
[1,2]. They are becoming crucial in weak-force resolution
[3,4], mass sensing [5–8], and mesoscopic quantum oper-
ations such as ground-state cooling of mechanical motion
[9,10] and entanglement between mechanical systems [11].
For example, gallium arsenide (GaAs) nano-optomechan-
ical disk resonators, whose high-frequency radial breathing
modes (RBMs) strongly couple to optical whispering
gallery modes (WGMs) [12,13], are expected to display
low mechanical dissipation thanks to their constitutive
crystalline epitaxial material, and they have indeed
achieved large Q-frequency products. However, despite
the achieved control of clamping losses [14,15], their
ultimate mechanical performances are still affected by
residual damping processes. The investigation of these
processes is the focus of the present work.
In this Letter, specific dissipation channels are made

negligible by experimental conditions (vacuum operation
that suppresses fluidic damping) or by design (pedestal
engineering that suppresses anchoring losses [14,15]),
enabling a direct analysis of intrinsic loss mechanisms.
These are investigated by comparative measurement of
identical resonators made out of two distinct epitaxial
wafers, and accurately compared to models of phonon-
phonon damping. Surface nanomechanical dissipation is

investigated by observing the influence of an atomic layer
deposition (ALD) of alumina onto the resonators. The
temperature dependence between 3 and 300 K is system-
atically measured and fitted by two-level systems (TLS)
models, allowing the emergence of a microscopic picture of
damping processes in GaAs resonators. Our results indicate
that TLS dissipation dominates at all temperatures, despite
the crystalline nature of the material. By comparing distinct
wafers, as well as pristine and surface-treated resonators,
we provide evidence about the nature and localization of
TLS. Our study finally provides a consistent picture of
noise mechanisms affecting high-Q crystalline nanome-
chanical systems, which are generally regarded as the best
candidates for quantum applications.
The employed GaAs optomechanical disks have a radius

of 5.5 μm, are 200 nm thick, and sit on a 1.8-μm-high
aluminium gallium arsenide (AlGaAs) pedestal of radius
500 nm. The samples are fabricated from two distinct
wafers (1 and 2) grown by molecular beam epitaxy (MBE)
under distinct conditions but with the same nominal
structure: 200 nmðGaAsÞ=1.8 μmðAl0.8Ga0.2AsÞ=500 μm
(semi-insulating GaAs). The disk and their optical coupling
suspended waveguides [16] are first patterned in a negative
resist using electron beam lithography. The resist is
developed and serves as a mask during the inductively
coupled plasma reactive ion etching (ICP-RIE) with a
SiCl4=Ar chemistry. The pedestal is underetched with a
hydrofluoric acid solution, and the waveguide inverted
taper endings are freed using a BCK solution [17].
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Figure 1(a) shows an electron micrograph of a fabricated
device.
In the following, we invariably measure the quality

factor Qm of a mechanical mode or its energy dissipation
rate Γm ¼ ωm=Qm, obtained from the full width at half
maximum of the corresponding resonance if the frequency
noise is negligible, which is the case here (not shown). The
mechanical spectrum is measured optomechanically by
tuning the laser on the flank of a WGM resonance and
analyzing the radio-frequency noise of the output light
[12]. To avoid dynamical optomechanical backaction
modifying Γm [1,2], the measurements are taken as a
function of optical power and the linear evolution extrapo-
lated at zero power. We focus here on the first-order RBM,
which has a frequency of fm ¼ ωm=2π ¼ 260 MHz and is
only subject to intrinsic dissipation channels. Indeed,
GaAs disk resonators are operated in a cryostat (accessible
range 2.6 to 300 K) and under vacuum (≤10−5 mbar). At
such pressure, the gas damping of the breathing motion is
negligible [7,18]. The dimensions of the disk and pedestal
are also chosen to render clamping losses negligible. The
latter are simulated numerically by the finite element
method (FEM), as shown in Fig. 1(b), and our previous
work in the clamping-limited regime showed good
agreement with experiments [14,15]. We adopt here a
disk geometry for which our tolerance on pedestal dimen-
sions bounds clamping losses Γm to below 3.26 kHz,
corresponding to a Qm > 5 × 105. In what follows, this
channel of dissipation can be neglected, whatever the
temperature.
The measurements of Γm between 3 and 300 K are

shown in Fig. 2(a) for nominally identical resonators
fabricated with the exact same process, but out of the
two distinct epitaxial wafers (1 and 2). These results reveal
two obvious features. First, the intrinsic dissipation tends to
increase with temperature, in a similar manner for the two
wafers; second, the dissipation is larger in wafer 1 than in

wafer 2. The temperature evolution of Γm distinguishes
three regimes: (1) a slow increase between 3 K and 150 K;
(2) a peak around 180 K; and (3) a quasiplateau from 200 K
to 300 K. The similar behavior of wafers 1 and 2 points
towards some universality, whose origin remains to be
elucidated. Fluidic and clamping losses being negligible,
the dissipation processes must take place in the bulk or at
the surface of resonators.
We first analyze the mechanical dissipation induced by

interaction of the 260 MHz (mechanical) phonon with
high-frequency (≃h=kBT) thermal phonons. This phonon-
phonon damping was discussed in the bulk, using the
Landau-Rumer approach (valid when ωmτph ≫ 1) or a
Boltzmann equation approach like that employed by
Akhiezer (valid when ωmτph ≪ 1), where τph is a relaxation
time for thermal phonons. The relation between these
approaches was discussed by Maris [19]. The Boltzmann
equation description assumes thermal phonons to be
localized with respect to the mechanical wavelength, a
condition implying that kBT ≫ hfm, which is satisfied here
where T > 3 K. Upon incidence of a mechanical wave
(even spatially uniform), the population of thermal phonons
is perturbed as a consequence of the lattice anharmonicity
and dissipates energy via collisions to return to equilibrium.
A collision time approximation can be adopted, provided
ωmτph < 1, leading to an expression of this Akhiezer
damping [19–22]:

Γm ¼ ωm
CpTðΔγÞ2

ρc̄2
ωmτph

1þ ðωmτphÞ2
; ð1Þ

where Cp and ρ are the volume specific heat and density,
ðΔγÞ2 is the variance of the Grüneisen parameter over
thermal phonons involved in the process, and 3=c̄3 ¼
1=c3l þ 2=c3t is the mean Debye sound velocity, with
cl (ct) being the longitudinal (transverse) velocity. The

µ

(a)

(b)

FIG. 1. (a) A 200-nm-thick GaAs disk resting on a 500-nm-radius AlGaAs pedestal. The suspended optical coupling waveguide with
inverted tapers can be seen on the right side. The square-shaped pads on the link hold the guide of the adjacent device (not shown).
(b) FEM simulation of the first-order RBM of the disk. The color scale corresponds to the modulus of the displacement vector, in
logarithm scale and in arbitrary units. The black lines correspond to the different geometrical domains at rest for the FEM simulation.
Perfectly matched layers (PMLs) are introduced at the substrate boundaries. The displacement is strongly localized within the disk,
corresponding to a clamping Γm < 2.5 kHz (Qm > 6.5 × 105).
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relaxation of thermal phonons occurs both in the bulk and
at the resonator’s surface τ−1ph ¼ τ−1bulk þ τ−1surf , where τbulk ¼
3κ=Cpc̄2 is a temperature-dependent relaxation time [22],
with κ being the bulk thermal conductivity and τsurf being a
surface relaxation time governed by the resonator geometry.
In the spirit of prior works on micro- and nanoscale
resonators [23,24], we adopt the relation τsurf ¼

ffiffiffiffiffiffi
VR

3
p

=c̄,
with VR being the resonator’s volume. The temperature
dependance of τph is mainly set by κ and Cp [25], and in the
second order by c̄ [26], leading to the evolution of ωmτph

shown in the inset of Fig. 2(b). The Akhiezer mechanism
requires a finite variance of theGrüneisen parameterΔγ ≠ 0,
which is approximated [27] by ðΔγÞ2 ¼ 1.5γ̄2, with γ̄ being
the average Grüneisen parameter and the factor 1.5 taken to
reproduce bulk acoustic attenuation around 300 MHz [27].
The Akhiezer prediction of Eq. (1) is reported in Fig. 2(b)
and accounts for the first part of the phonon-phonon
damping. The strain field of the RBM being nonuniform,
the anharmonicity of the lattice (γ̄ ≠ 0) additionally induces
temperature gradientswithin thevibrating resonator, leading
to irreversible heat flows and dissipation. This thermoelastic
damping (TED) [21,24,28–30] can be simulated by FEM,
resulting in the extra contribution reported in Fig. 2(b) when
the temperature dependence of thermal expansion is
accounted for [31]. The total phonon-phonon damping is
finally plotted in Fig. 2(b). It shows an overall increase with
temperature, yet with no peak at 180 Kor plateau.Whatever
the temperature, its amplitude is also smaller than in
measurements, being essentially negligible for T < 50 K
and representing a small contribution at higher temperatures.
Our models hence indicate that phonon-phonon mecha-
nisms do not govern the dissipation of our nanomechanical
resonators. This conclusion is supported by the clear differ-
ence in dissipation amplitude between the twowafers shown
in Fig. 2(a), which points towards material-related effects
that need to be elucidated.
In order to investigate the contribution of surfaces, we

deposit a 6.5 nm layer of alumina by ALD onto resonators
made out of wafer 2, and compare in Fig. 3(a) the temper-
ature dependence of dissipation before and after ALD
treatment. The ALD treatment increases the dissipation at
all temperatures: the peak around 180 K vanishes, and the
plateaulike behavior is replaced by a monotonic increase.
The outcome of this trial is that surfaces play an important
role in the mechanical dissipation of GaAs nanoresonators.
This will be further illustrated in the analysis below.
Indeed, the exact temperature dependance ofΓm, together

with its variation with the employed surface treatment or
wafer, can help in identifying the microscopic origin of
dissipation. With this mindset, we systematically analyze
our results with TLS models initially developed for amor-
phous materials [32–35]. These models depict microscopic
defects and configurations as potential energy double wells
[Fig. 3(b)] with the following parameters: the asymmetryΔ,
the barrier height V0, or the well-to-well tunneling ampli-
tude Δ0 ≈ 2E0=π exp ½−dðmV0=2ℏ2Þ1=2�, with d being the
separation between wells and E0 the ground-state energy of
a single well [32–35]. For a TLS distribution PðΔ;Δ0Þ, the
dissipation rate is in general given by [32]

Γm ¼ ωm
2η2NTLS

ρc2skBT

Z Z

Rþ
dΔdΔ0

Δ2

E2
sech2

�
E

2kBT

�

×
ωmτ

1þ ðωmτÞ2
PðΔ;Δ0Þ; ð2Þ

(a)

(b)

FIG. 2. (a) Measured mechanical dissipation rate as a function
of temperature. The two wafers were grown in two distinct MBE
chambers. Fifty resonators were measured in total, and the results
shown here are representative. (b) Modeled mechanical dissipa-
tion due to phonon-phonon interactions, for both Akhiezer and
TED mechanisms. Note that the damping cancels artificially
around 60 K with the Grüneisen parameter, as a result of our
approximation on Δγ (see text). Inset: Temperature evolution of
the parameter ωmτph (see text).
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with η being the deformation potential coupling of a TLS
to the mechanical phonon (in eV), NTLS the density of
TLS, ρ and cs the density and sound velocity of the material,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 þ Δ2

p
, and τ the TLS relaxation time. For

T ≥ 10 K, several energy levels of the wells are typically
populated. In this so-called thermally activated regime,
the relaxation time is given by a quasi-Arrhenius law
τ ¼ τ0eðV0=kBTÞsechð½Δ=2kBT�Þ, where τ−10 is of the order
of the Debye frequency of the material [34], and Δ ≈ E,
leading a simplified expression of the dissipation [35],
where a distribution PðΔ; V0Þ is used equivalently.
In order to fit the measured temperature-dependent

dissipation, we consider two distinct distributions intro-
duced in the literature [35,36] and sum up their contribution
using the linearity of Eq. (2): (1) The single-defect
distribution PðΔ0;Δ0

0Þ ¼ δðΔ0 − ΔÞ · δðΔ0
0 − Δ0Þ considers

both Δ and Δ0, and hence E, as fixed, with δ being the
Dirac function. This distribution assumes a single type of
TLS, and makes use of an alternative deformation potential
D ¼ ðΔ=EÞη for conciseness. (2) The amorphous distri-
bution PðΔ; V0Þ ¼ fðΔÞ · gðV0Þ, where f is a Gaussian

function and g a quasi-Gaussian function, with mean value
0 and width Δ1 and V1 [35]. This model is typically used
for amorphous materials where a broad distribution of TLS
couples to acoustic waves. In Fig. 3(c), these two con-
tributions sum up with the prior phonon-phonon contribu-
tion to reproduce the mechanical dissipation measured on
resonators of wafer 2 in the range T ≥ 10 K, with TLS
parameters shown in Table I. We note that the dissipation
below 10 K is difficult to model using the thermally
activated regime, such that the two lowest temperature
points are fitted with a coherent version of the relaxation
time [32,37], τ−1 ¼ ðη2Δ2

0E=2πρc
5
sℏ4Þ coth ð½E=2kBT�Þ.

The obtained level of agreement sheds light on the micro-
scopic nature of dissipation. The mechanical damping up to
100 K is well explained by an amorphous TLS model,
which suggests a role of the surface reconstruction layer,
whose amorphous nature was observed by transmission
electron microscopy [38]. In order to model the dissipation
at higher T, the single-defect model must, however, be used
on top. The related defect has an activation energy of
≈0.1 eV, which is in the range of known deep centers in

TABLE I. Fitting parameters for TLS models in the thermally activated regime. The mathematical rigidity of the fitting function allows
unequivocal parameter estimation, with error intervals corresponding to a factor-2 reduction of the distance between model and data.

Wafer 2 (before ALD) Wafer 2 (after ALD) Wafer 1 (before ALD)

Amorphous Single defect Amorphous Single defect Amorphous Single defect

Δ1=kB (K) 1430�400 � � � 1400�200 � � � 1200�300 � � �
V1=kB (K) 1020�250 � � � 1300�200 � � � 1000�350 � � �
τ0 (s) 1.76þ3.24

−1.26 × 10−13 3.8þ0.4
−0.9 × 10−12 2.57þ2

−1 × 10−13 4.2þ0.7
−0.5 × 10−10 2.7þ2.3

−2.2 × 10−13 4.36�1 × 10−12

E (meV) � � � 100�5 � � � 50þ3−1 � � � 100�4

η2NTLS (eV2 m−3) 6.05�0.5 × 1025 � � � 1.49�0.15 × 1026 � � � 1.04�0.2 × 1026 � � �
D2NTLS (eV2 m−3) � � � 1.24þ0.1

−0.3 × 1027 � � � 7.59�0.5 × 1025 � � � 2.34�0.4 × 1027

(a) (b)

(c)

FIG. 3. (a) Intrinsic mechanical dissipation before and after ALD of 6.5 nm of Al2O3. (b) Double-well model for TLS. (c) Modeling of
the intrinsic mechanical dissipation in wafer 2 using phonon-phonon interactions and TLS models.
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GaAs [39]. For a deformation potential ≈10 eV, the
inferred density of TLS is ≈1018–1019 cm−3, well above
the unintentional doping of our epitaxial GaAs (1014 cm−3

range), suggesting the formation of TLS at the surfaces in a
density superior to the bulk. If all TLS are on surfaces, a
surface density of ≈1013–1014 cm−2 can be deduced, which
is precisely the range of surface-state densities reported on
intrinsic GaAs surfaces [40]. The localization of TLS can
further be investigated by looking at resonators that are
ALD-treated or fabricated out of wafer 1 (see Table I).
The ALD treatment modifies both the amorphous and
single-defect distributions, indicating again that both types
of TLS are present at surfaces. It enhances the density of
amorphous TLS, which is consistent with the amorphous
nature of deposited alumina, but it decreases the density of
single-defect TLS, which is reminiscent of surface passi-
vation by ALD [41]. The superior mechanical dissipation in
wafer 1 compared to 2 appears to originate from a different
density of amorphous TLS, which is again consistent with
their localization at surfaces, since surface absorption of
photonic resonators fabricated out of wafer 1 was also
observed to be superior to that of wafer 2 [41].
In summary, we have reported a systematic study of

intrinsic nanomechanical dissipation in GaAs resonators.
Microscopic models indicate that two-level systems domi-
nate damping at any temperature between 3 and 300 K.
While in conflict with the common sense that crystalline
devices are less affected by TLS than their amorphous
counterparts [42,43], this conclusion is consistent with the
presence of an amorphous reconstruction layer at their
surface. Such a layer already rules the optical dissipation
of high-Q GaAs resonators with a large surface-to-volume
ratio [38], and we bring here a series of evidence that TLS
impacting their nanomechanical dissipation are mainly
localized at surfaces as well. Our models anticipate that
freezing these fluctuating TLS would be beneficial, predict-
ing a mechanical quality factor Qm beyond 109 at 10 mK.
The related Q-frequency product Qm × fm, which is an
important figure of merit in the quantum domain [2,14],
would reach the 1017–1018 range for GaAs resonators,
equaling the performances of other crystalline devices in
quartz [44] and silicon [45]. Ultralow-temperature experi-
ments, possibly below the millikelvin level, may ultimately
reveal how far the performances of nanomechanics can be
pushed, for metrological and quantum applications.
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