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The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a
“long-range” 1=r5 potential, which can be sought for in phenomena originating on the atomic and
subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding
energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the
induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-
mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron
binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as
isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-
mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude.
Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of
pairs of standard-model neutrinos and other weakly charged particles.
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Introduction.—The exchange of a pair of neutrinos
between two particles is predicted to mediate a long-range
force between the particles [1,2]. In Ref. [2] (see also [3–8]),
the long-range part of the potential due to the exchange of a
pair of massless neutrinos between two particles was
calculated and found to scale as ∝ 1=r5. The 1=r5 neu-
trino-mediated potential induces a feeble 1=r6 force, which
is far too small to detect with current experiments that search
for new macroscopic forces [9–13]. The implications of
many-body neutrino-mediated forces in stars were consid-
ered in Ref. [14], but it was subsequently pointed out that the
effects of such forces are suppressed in all types of stars [15].
In the present Letter, we consider the novel approach of

searching for effects associated with the neutrino-mediated
1=r5 potential on atomic and subatomic length scales.
Measurements of transition and binding energies in atoms
and nuclei provide a powerful way of probing neutrino-
mediated forces, since energy differences (or, equivalently,
frequencies) are among the most accurately measurable
physical quantities. In particular, current state-of-the-art
atomic and ionic clocks operating on optical transitions
have demonstrated a fractional accuracy approaching the
level of ∼10−18 [16–19].
Atomic s-wave states (states with orbital angular

momentum l ¼ 0) offer an ideal platform to search for
the neutrino-mediated 1=r5 potential due to the lack of a
centrifugal barrier and the highly singular nature of the
1=r5 potential. As the simplest example, the radial part of
the nonrelativistic 1s hydrogen wave function scales as
R1sðrÞ ∝ r0=a3=2B at small distances (where aB ≈ 5.29 ×
10−11 m is the atomic Bohr radius), meaning that the
integral

R∞
rc
r2½R1sðrÞ�2=r5dr diverges like ∝ 1=r2c for a

pointlike nucleus (rc ¼ 0). In the physical hydrogen atom
with a finite-size nucleus (rc ∼ 10−15 m), this integral is
finite and scales parametrically like ∼1=ða3Br2cÞ, which is
enhanced compared to the characteristic ∼1=a5B scaling in
atomic states of higher orbital angular momentum by the
factor ðaB=rcÞ2 ∼ 109.
Potential induced by the exchange of a pair of low-mass

neutrinos.—The potential mediated by the exchange of a
pair of neutrinos of nonzero mass mν is long range in an
atom, if the size of the atom ismuch smaller than theYukawa
range parameter associated with the pair of neutrinos,
ƛ ¼ 1=ð2mνÞ ≫ Ratom. Beta-decay experiments directly
constrain the electron-antineutrino mass to be mν̄e ≲ 2 eV
[20,21], while cosmological observations give model-de-
pendent constraints on the sumof the three different neutrino
masses at a comparable level [22]. This implies a Yukawa
range parameter of ƛ≳ 10−7 m ≫ Ratom, and sowe can treat
the neutrino-mediated potential as being long range.
The long-range part of the potential due to the exchange

of a pair of low-mass neutrinos between two fermions reads
as follows [2–4]:

VνðrÞ ¼
G2

F

4π3r5

�
a1a2 − b1b2

�
3

2
σ1 · σ2 −

5

2
ðσ1 · r̂Þðσ2 · r̂Þ

��

¼ G2
F

4π3r5

�
a1a2 −

2

3
b1b2σ1 · σ2

−
5

6
b1b2½σ1 · σ2 − 3ðσ1 · r̂Þðσ2 · r̂Þ�

�
; ð1Þ

where GF ≈ 1.166 × 10−5 GeV−2 is the Fermi constant of
the weak interaction, r is the distance between the two
fermions, σ1 and σ2 are the Pauli spin matrix vectors of
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fermions 1 and 2, and r̂ is the unit vector directed
between the two fermions. In the present Letter, we focus
mainly on systems in l ¼ 0 states, which are described by
spherically symmetric wave functions. For such states, the
expectation value of the rank-2 tensor part in (1) vanishes:
h½σ1 · σ2 − 3ðσ1 · r̂Þðσ2 · r̂Þ�=r5il¼0 ¼ 0.
The species-dependent parameters ai and bi in Eq. (1)

are determined by several processes involving weak neutral
and charged currents (see Fig. 1 of Ref. [4]). For a single
neutrino species, charged leptons receive contributions

from both the weak neutral and charged currents: að1Þl ¼
1þ gVl ¼ 1=2þ 2 sin2ðθWÞ and bð1Þl ¼ 1þ gAl ¼ 1=2, with
sin2ðθWÞ ≈ 0.24 [23], while nucleons receive a contribution

solely from the weak neutral currents: að1Þn ¼ −1=2,
að1Þp ¼ 1=2 − 2 sin2ðθWÞ, bð1Þn ¼ −gA=2, and bð1Þp ¼ gA=2,
with gA ≈ 1.27. The nucleons and charged leptons also
receive contributions from the other two neutrino species,
due purely to the weak-neutral-current processes, with

each neutrino species contributing the amount að2Þl ¼ gVl ,

bð2Þl ¼ gAl , a
ð2Þ
N ¼ að1ÞN , and bð2ÞN ¼ bð1ÞN .

Furthermore, there are additional contributions from
other weakly charged species (species that participate in
weak processes) of mass m via the purely weak-neutral-
current process, when the dominant effects of the potential
(1) arise at length scales L ≪ 1=ð2mÞ. The effects of these
weakly charged species are analogous to the effects of
neutrino species in the weak-neutral-current channel,
except for an overall numerical constant, which is given
by 2½ðgVl Þ2 þ ðgAl Þ2� ≈ 0.501 for a charged lepton species,
2½ðgVu Þ2 þ ðgAuÞ2� ≈ 0.565 for an up-type quark species, and
2½ðgVd Þ2 þ ðgAdÞ2� ≈ 0.731 for a down-type quark species.
These numerical constants are normalized to the value for a
neutrino species: 2½ðgVν Þ2 þ ðgAν Þ2� ¼ 1.
Altogether, the combinations of species-dependent

parameters in Eq. (1) therefore have the following effective
values,

a1a2 → að1Þ1 að1Þ2 þ ðNeff − 1Það2Þ1 að2Þ2 ; ð2Þ

b1b2 → bð1Þ1 bð1Þ2 þ ðNeff − 1Þbð2Þ1 bð2Þ2 ; ð3Þ

where Neff is the effective number of neutrino species. In
systems where the dominant effects of (1) arise on the
atomic length scale, the main contributions are from the
species νe, νμ, and ντ, giving Neff ≈ 3. In systems where
the dominant effects of (1) arise on the nuclear length scale,
the main contributions are from the species νe, νμ, ντ, and e,
giving Neff ≈ 3.50 [25]. Finally, in systems where the
dominant effects of (1) arise on a length scale of the order
of the Compton wavelength of the Z or W boson, the main
contributions are from the species νe, νμ, ντ, e, μ, τ, u, c, d,
s, and b, giving Neff ≈ 14.47, taking into account that each
quark has three possible colors. The overall sign of the

potential (1) is reversed when one of the two fermions is
replaced by its antiparticle.
Deuteron binding energy.—Deuteron, the bound state of

a proton and a neutron in the 3S1 state (with a small
admixture of the 3D1 state, which can be neglected in the
first approximation), can be simply modeled by a spherical
potential well with an infinitely repulsive inner hard core, in
which the potential between the two nucleons takes the
following form,

VnuclðrÞ ¼
8<
:

þ∞ for r < r1;

−jV0j for r1 < r < r2;

0 for r > r2;

ð4Þ

where jV0j is the depth of the spherical potential well. For
our estimates below, we assume the values r1 ¼ 0.5 fm
and r2 ¼ 2.5 fm.
The radial wave function solutions of the potential (4) for

an s-wave state are given by

RsðrÞ ¼

8>><
>>:

0 for r ≤ r1;

C1j0ðkrÞ þ C2n0ðkrÞ for r1 ≤ r ≤ r2;

C3h
ð1Þ
0 ðiκrÞ for r ≥ r2;

ð5Þ

where j is the spherical Bessel function of the first kind,
n is the spherical Bessel function of the second kind, hð1Þ is
the spherical Hankel function of the first kind, k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðjV0j − EBÞ

p
and κ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2μEB
p

, with μ ¼ mnmp=
ðmn þmpÞ ≈ 0.47 GeV being the deuteron reduced mass
and EB ≈ 2.2 MeV the deuteron binding energy. Requiring
the continuity of Rs at r ¼ r1 and the continuity of both Rs
and dRs=dr at r ¼ r2, we determine that jV0j ≈ 36 MeV.
The normalization condition

R
∞
0 r2jRsðrÞj2dr ¼ 1 then

fixes the normalization constants in Eq. (5) to be
C1 ≈ 0.46, C2 ≈ 0.22, and C3 ≈ −0.22 fm−3=2.
Using the wave function in Eq. (5), we calculate the

expectation value of the 1=r5 operator for the deuteron
bound state to be

h3S1j
1

r5
j3S1i ≈ 0.060 fm−5: ð6Þ

Using the result (6), we determine the change in the
deuteron binding energy due to the neutrino-mediated
potential (1) to be

δEBð3S1Þ ≈ −
G2

F

4π3

�
anap −

2

3
bnbp

�
× 0.060 fm−5: ð7Þ

Comparing the measured [26] and predicted [27,28]
values of the deuteron binding energy

Eexp
B ¼ 2.2 245 663ð4Þ MeV; ð8Þ
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Etheor
B ¼ 2.22 457ð1Þ MeV; ð9Þ

and using expressions (7), (2), and (3), we place the
following constraint on the neutrino-mediated potential
in Eq. (1),

G2
eff ≲ 7.9 × 108G2

F: ð10Þ

Spectroscopy of simple atoms.—Simple two-body atoms
with relatively light nuclei (Z ∼ 1) can be treated in the
nonrelativistic framework. Using the nonrelativistic form of
the wave functions for a hydrogenlike system [29], we
calculate the expectation value of the 1=r5 operator for
l ¼ 0 atomic states to be

hnsj 1
r5

jnsi ≈ 2Z3

n3r2cã3B
; ð11Þ

where n is the principal quantum number, Z is the electric
charge of the nucleus (in units of the proton electric
charge e), and ãB is the reduced atomic Bohr radius.
The cutoff parameter rc in (11) depends on the specific
system. In atoms with a hadronic nucleus, rc is given
by the nuclear radius Rnucl, while in exotic atoms with a
nonhadronic pointlike “nucleus,” rc is determined by
the reduced Compton wavelength of the Z boson,
ƛZ ≈ 2.16 × 10−3 fm, which is the length scale below
which the Fermi four-fermion approximation is no longer
valid and the long-range potential in Eq. (1) changes to a
much less singular 1=r form.
Positronium and muonium spectroscopy.—The absence

of hadronic nuclei in positronium (a bound state of an
electron and a positron) and muonium (a bound state of an
electron and an antimuon) make these very clean systems to
study. Using the result (11) with Z ¼ 1, we determine the
energy shifts in the positronium and muonium n 3S1 and n
1S0 states due to the neutrino-mediated potential (1) to be

δEðn3S1Þ ≈ −
G2

F

4π3
2

n3ƛ2Zã
3
B

�
a2l −

2

3
b2l

�
; ð12Þ

δEðn1S0Þ ≈ −
G2

F

4π3
2

n3ƛ2Zã
3
B
ða2l þ 2b2l Þ; ð13Þ

with ãB ¼ 2aB in positronium and ãB ≈ aB in muonium.
Comparing the measured [30] and predicted [31] values

of the positronium 13S1 − 23S1 transition frequency,

νexp1S−2S ¼ 1233 607 216.4ð3.2Þ MHz; ð14Þ

νtheor1S−2S ¼ 1233 607 222.18ð58Þ MHz; ð15Þ

and using expressions (12), (2), and (3), we place the
following constraint on the neutrino-mediated potential in
Eq. (1),

G2
eff ≲ 2.6 × 108G2

F: ð16Þ

Additionally, comparing the measured [32] and pre-
dicted [31] values of the positronium 11S0 − 13S1 ground-
state hyperfine splitting interval (HFS),

νexpHFS ¼ 203 389.10ð74Þ MHz; ð17Þ

νtheorHFS ¼ 203 392.01ð46Þ MHz; ð18Þ

and using expressions (12), (13), and (3), we place the
following constraint on the neutrino-mediated potential in
Eq. (1),

G2
eff ≲ 1.5 × 107G2

F: ð19Þ

Finally, comparing the measured [33] and predicted
[34,35] values of the muonium ground-state hyperfine
splitting interval,

νexpHFS ¼ 4 463 302 776ð51Þ Hz; ð20Þ

νtheorHFS ¼ 4 463 302 868ð271Þ Hz; ð21Þ

and using expressions (12), (13), and (3), we place the
following constraint on the neutrino-mediated potential in
Eq. (1),

G2
eff ≲ 1.9 × 102G2

F: ð22Þ

The energy shift in the muonium ground-state hyperfine
interval due to the long-range 1=r5 interaction mediated by
pairs of standard-model neutrinos and other weakly
charged particles is at the level ≈2 Hz.
Hydrogen and deuterium isotope-shift spectroscopy.—

Using the result (11) with Z ¼ 1 and ãB ≈ aB, we deter-
mine the energy shifts in the hydrogen and deuterium l ¼ 0
states, averaged over the respective hyperfine intervals, due
to the neutrino-mediated potential (1) to be

δEðnsÞ ≈ G2
F

4π3
alQW

n3R2
nucla

3
B
; ð23Þ

where QW ≡ 2ðNan þ ZapÞ is the weak nuclear charge,
with N being the neutron number and Z the proton number.
The measured and predicted differences of the 1s − 2s

transition frequency, averaged over the hyperfine interval,
in deuterium and hydrogen are [36]

νD;exp
1S−2S − νH;exp

1S−2S ¼ 670 994 334 606ð15Þ Hz; ð24Þ

νD;theor
1S−2S − νH;theor

1S−2S ¼ 670 994 348.9ð4.9Þ kHz; ð25Þ

where for the predicted value, we have determined the
dominant finite-nuclear-size effect using Eq. (2) of
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Ref. [36], together with the experimentally determined
charge radii of the proton and deuteron from spectroscopy
measurements in muonic hydrogen and muonic deuterium:
rp ¼ 0.841 84ð67Þ fm [37] and rd ¼ 2.125 62ð78Þ fm
[38]. Comparing the measured and predicted values in
(24) and (25), and using expressions (23) and (2), we place
the following constraint on the neutrino-mediated potential
in Eq. (1),

G2
eff ≲ 1.6 × 1011G2

F: ð26Þ

Spectroscopy of heavy atoms.—In heavy atoms (Z ≫ 1),
the spin-dependent terms of the potential (1) are largely
ineffective, compared with the spin-independent term. The
reason for this is that the spin-independent part of the
potential (1) acts coherently in atoms and scales roughly
with the number of neutrons N ≫ 1, whereas the spin-
dependent part acts incoherently in atoms, since ground-
state nuclei have at most two unpaired nucleon spins (due
to the nuclear pairing interaction).
Using the relativistic atomic wave functions for a valence

electron at small distances [39] (where the Coulomb field of
the nucleus is unscreened), we calculate the expectation
value of the operator (1), due to neutrino-pair exchange
between atomic electrons and nucleons, for an atomic
single-particle state with total angular momentum j ¼ 1=2
to be

δEκ ≈
G2

F

4π3
½ðκ − γÞ2 þ ðZαÞ2�ZðZi þ 1Þ2

ð2 − γÞν3R2
nucla

3
B

×
alQW

½Γð2γ þ 1Þ�2
�

aB
2ZRnucl

�
2−2γ

; ð27Þ

where κ ¼ ð−1Þ1−l, γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðZαÞ2

p
, α ≈ 1=137 is the

electromagnetic fine-structure constant, Zi is the net charge
of the atomic species (for a neutral atom Zi ¼ 0), and
ν is the effective principal quantum number, defined via
the ionization energy of the valence electron: I ¼
meα

2ðZi þ 1Þ2=ð2ν2Þ. In heavy nuclei, the nuclear radius
is generally well described by the relation Rnucl ¼ A1=3r0,
where A ¼ Z þ N is the nucleon number and r0 ≈ 1.2 fm.
To estimate the contribution of neutrino-pair exchange

between atomic electrons to the energy shift in heavy
atoms, we note that in this case the valence atomic electrons
now interact predominantly with a “core” of two 1s
electrons (which are situated mainly at the distances
r ∼ r1s ¼ aB=Z), instead of mainly with the N neutrons
of the nucleus. Thus, the electron-electron contribution to
the energy shift in heavy atoms is parametrically sup-
pressed compared to the electron-nucleon contribution by
the factor ðRnucl=r1sÞ2=N ≪ 1.
Calcium-ion isotope-shift spectroscopy and

nonlinearities of the King plot.—Many-electron atomic
systems function as the most precise systems in metrology,

with optical atomic and ionic clocks already demonstrating
a fractional precision at the level of ∼10−18 [16–19]. At the
same time, the complexity of many-electron atoms means
that theoretically predicted values for transition frequencies
in these systems generally have a precision that is many
orders of magnitude worse than the corresponding exper-
imental precision. To circumvent this issue, one can utilize
isotope-shift measurements in atoms and look for non-
linearities in the King plot [40], a technique that was
recently considered in Refs. [41–44] in the different context
of probing Yukawa interactions of hypothetical Higgs-like
particles.
As a specific example, we consider isotope-shift spec-

troscopy measurements in Caþ (Z ¼ 20, Zi ¼ 1). Caþ is an
excellent system for isotope-shift spectroscopy, since it has
five stable or long-lived isotopes with spinless nuclei
(A ¼ 40, 42, 44, 46, 48), as well as several readily
accessible optical transitions [45,46]. We shall consider
the pair of transitions, 2S1=2 − 2P1=2 and 2D3=2 − 2P1=2, to
which we refer as transitions 1 and 2, respectively. In this
case, the dominant effect of the neutrino-mediated potential
(1) is on the S level in transition 1; see Eq. (27). We can thus
write the differences in the transition frequency between
two isotopes A and A0, νAA

0
i ¼ νAi − νA

0
i , for the two

transitions in the following form:

νAA
0

1 ≈ K1μAA0 þ F1δhr2iAA0 − δEAA0
κ¼−1; ð28Þ

νAA
0

2 ≈ K2μAA0 þ F2δhr2iAA0 ; ð29Þ

where Ki and Fi are the usual mass- and field-shift
parameters, μAA0 ¼ 1=mA − 1=mA0 , with mA and mA0 being
the respective masses of isotopes A and A0, and δEAA0

κ¼−1 ¼
δEA

κ¼−1 − δEA0
κ¼−1 is the difference of the neutrino-induced

S-level energy shift between the two isotopes A and A0.
Dividing Eqs. (28) and (29) by μAA0, and simultaneously
solving the resulting equations, we can eliminate the
difference in the square of the charge radii between the
two isotopes, δhr2iAA0 , to give the following equation in
terms of the modified frequencies MνAA

0
i ¼ νAA

0
i =μAA0 ,

MνAA
0

1 ¼ K12 þ F12MνAA
0

2 −
δEAA0

κ¼−1
μAA0

; ð30Þ

where K12 ¼ K1 − F12K2 and F12 ¼ F1=F2.
We see that the last term on the right-hand side of

Eq. (30) scales as ∝ AA0 and thus gives rise to a non-
linearity in the plot of MνAA

0
1 versus MνAA

0
2 (the so-called

King plot [40]). Such nonlinearities have been constrained
experimentally at the level ≲25 MHzGeV over the interval
40 ≤ A ≤ 48 [45]. We can use this experimental result,
together with expressions (27) and (2), to constrain the
neutrino-mediated potential in Eq. (1). For the input
parameters of (27), we use the measured value of the
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ionization energy of the 2S1=2 state in Caþ: I ≈ 11.9 eV
[47], and since the measured differences in the mean-square
nuclear charge radii are relatively small across all of the
relevant Caþ isotopes [45], for simplicity, we can assume
the nuclear radius Rnucl ¼ A1=3r0 with A ¼ 44 for all of the
relevant isotopes. This yields the following constraint:

G2
eff ≲ 4.0 × 1011G2

F: ð31Þ

Conclusions.—We have calculated the effects of the
neutrino-mediated potential in Eq. (1) on transition and
binding energies in atoms and nuclei. Using existing
spectroscopy data, we have derived constraints on neu-
trino-mediated forces (see Fig. 1). Our derived limits
improve on existing constraints on neutrino-mediated
forces from experiments that search for new spin-indepen-
dent [9–11] and spin-dependent [12,13] macroscopic forces
by 18 orders of magnitude.
With a sufficient improvement in experimental and

theoretical precision, future spectroscopy experiments have
the potential to probe long-range forces mediated by the
exchange of pairs of standard-model neutrinos and other
weakly charged particles. The observation of neutrino-
mediated forces via atomic spectroscopy requires only a
single interval. The most promising interval at the moment
appears to be the ground-state hyperfine interval in muo-
nium. The theoretical precision of this interval is currently
limited by an independent experimental determination of
the electron-to-muon mass ratio [34,35]. The purely theo-
retical uncertainties in this case are all subleading [34,35]
and, with the exception of fourth-order QED processes
(where some terms still need to be calculated), are either

smaller than or comparable to the size of the frequency shift
expected from neutrino-mediated forces in the standard
model. In order to probe neutrino-mediated forces within
the standard model, one will require a more precise and
complete calculation of fourth-order QED contributions, as
well as calculations of fifth-order QED contributions and
all other one-loop electroweak contributions that do not
involve neutrinos.
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sions. This work was supported by the Humboldt Research
Fellowship.
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