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Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of
magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect
agreement with the expected microscopic result arising from the dual field theory computation of the
topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case
and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
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Introduction.—The Bekenstein-Hawking entropy of a
black hole is proportional to the area of its event horizon:
S ¼ kBc3A=ð4GNℏÞ. Given the fundamental constants
involved, its complete understanding necessarily involves
thermodynamical, relativistic, gravitational, and quantum
aspects. Studying corrections to the Bekenstein-Hawking
entropy is crucial for a full understanding of the microscopic
degrees of freedom responsible for the macroscopic entropy.
In this Letter, we report on a computation of the one-loop
effective action for a class of asymptotically AdS4 black
holes thatmatchesprecisely the coefficient of the logarithmic
correction arising from a microscopic description.
The framework for our computation is the anti–de Sitter/

conformal field theory (AdS=CFT) correspondence, which
conjectures the mathematical equivalence of string theory
(containing gravity) in asymptotically AdS spacetimes and
certain conformal field theories. It provides, by construc-
tion, a nonperturbative definition of quantum gravity in
asymptotically AdS spacetimes which is capable, in prin-
ciple, of addressing puzzling questions of black holes using
field theory techniques. Only recently, however, has an
explicit example in AdS4=CFT3 emerged. It has been shown
that in the large-N limit, the topologically twisted index of a
certain Chern-Simons theory coupled to matter, known as
the ABJM theory, correctly reproduces the leading term in
the entropy of magnetically charged black holes in asymp-
totically AdS4 spacetimes [1]. Similar matches have now
been established in various other situations, including
dyonic black holes [2], black holes with hyperbolic horizons
[3], and black holes in massive IIA theory [4–6].

Having established the microscopic counting, it is
natural to embark on an exploration of the subleading in
N structure. In our previous work, we studied corrections to
the topologically twisted index using a combination of
numerical and analytical techniques and identified a log-
arithmic correction of the form − 1

2
logN [7]. A correspond-

ing computation on the gravity side, focusing on the near-
horizon contribution to the one-loop effective action and
following the quantum entropy formalism developed by
Sen [8,9], however, failed to match this microscopic result
[7,10]. However, here we report that perfect agreement is
achieved when the one-loop supergravity computation is
performed in the full AdS4 black hole background, and not
just in the near-horizon geometry. This suggests that, in
contrast with asymptotically flat black holes, the micro-
scopic degrees of freedom of AdS black holes are sensitive
to the background in which they are embedded.
The topologically twisted index in ABJM theory.—On

the microscopic side, the CFT dual to magnetically
charged AdS4 black holes is given by ABJM theory with
background flavor fluxes turned on. ABJM theory is a
three-dimensional Chern-Simons-matter theory with the
UðNÞk × UðNÞ−k gauge group and opposite integer levels k
and−k [11]. The matter sector contains four complex scalar
fields CI, ðI ¼ 1; 2; 3; 4Þ in the bifundamental representa-
tion ðN; N̄Þ, together with their fermionic partners. The
theory is superconformal and has N ¼ 6 supersymmetry
generically, but for k ¼ 1, 2, the symmetry is enhanced
to N ¼ 8. Holographically, ABJM describes a stack of N
M2-branes probing a C4=Zk singularity, whose low-energy
dynamics are effectively described by 11-dimensional
supergravity.
The presence of background fluxes implements a partial

topological twist, and it is crucial for preserving super-
symmetry when the theory is defined on Σg × S1, where Σg
is a genus-g Riemann surface corresponding to the horizon
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topology of the black hole. The topologically twisted index
is then defined as the supersymmetric partition function of
the twisted theory, Zðna;ΔaÞ ¼ Trð−1ÞFe−βHeiJaΔa . It
depends on the fluxes, na, through H, and on the chemical
potentials Δa. This index was constructed in Ref. [12] for
N ≥ 2 supersymmetric theories on S2 × S1 and computed
via supersymmetric localization. It was then applied to
ABJM theory in Ref. [1], and evaluated in the large-N limit.
In the large-N limit, and at genus zero, the k ¼ 1 index

takes the form

F ¼ −
N3=2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ1Δ2Δ3Δ4

p X

a

na
Δa

þ N1=2f1ðΔa; naÞ

−
1

2
logN þ f3ðΔa; naÞ þOðN−1=2Þ; ð1Þ

where F ¼ Re logZ. The leading OðN3=2Þ term was
obtained in Ref. [1], and it exactly reproduces the
Bekenstein-Hawking entropy of a family of extremal
AdS4 magnetic black holes admitting an explicit embed-
ding into 11D supergravity [13], once extremized with
respect to the flavor and R symmetries. The OðN1=2Þ term
can be identified with Oðα03R4Þ corrections in the super-
gravity, and it does not appear to have a simple form. On
the other hand, the − 1

2
logN term, obtained numerically in

Ref. [7], appears to be universal, and is what we wish to
reproduce from the gravity side.
In fact, the topologically twisted index can be defined on

Riemann surfaces with arbitrary genus [14,15], and there is
a simple relation between the index on Σg × S1 and that on
S2 × S1: FΣg×S1ðna;ΔaÞ ¼ ð1 − gÞFS2×S1 ½ðna=1 − gÞ;Δa�.
Since the coefficient of the logarithmic term in FS2×S1

does not depend on na we simply have

FΣg×S1ðna;ΔaÞ ¼ … −
1 − g
2

logN þ � � � : ð2Þ

We now demonstrate that this logarithmic correction
naturally appears in the quantum correction to the extremal
magnetically charged AdS4 black hole.
One-loop quantum supergravity.—Since the AdS4 black

holes may be embedded in 11D supergravity [13], we will
take an 11D approach to the gravity calculation.
Dimensional analysis shows that logarithmic corrections
come from one-loop determinants. The standard compu-
tation of such terms for black holes in asymptotically flat
spacetime reduces to the near-horizon geometry [9].
However, in Refs. [7,10], the near-horizon contribution
was shown to be −2 logN, resulting in a mismatch with the
field theory answer. Such a mismatch indicates that either
somehow the near-horizon geometry is not enough to
compute the quantum entropy, or the index does not
correctly count microstates in the subleading order.

In this Letter, we provide evidence for the first possibility
by directly computing the logarithmic correction to the
entropy from its thermodynamical definition,

S ¼ lim
β→∞

ð1 − β∂βÞ logZ½β;…�; ð3Þ

where β is the inverse temperature. We work in the large-
AdS-radius limit, L ≫ 1, where L ∼ N

1
6 by the AdS=CFT

dictionary. Our focus is on the one-loop partition function,
which can be written schematically as

Z1−loop½β;…� ¼
X

D

ð−1ÞD
�
1

2
log det0 D

�

þ ΔF0; ð4Þ

where D stands for kinetic operators corresponding to
various fluctuating fields and ð−1ÞD ¼ −1 for bosons and 1
for fermions. The prime indicates removal of the zero
modes, which are accounted for separately by

ΔF0 ¼ log
Z

½dϕ�
�
�
�
�
Dϕ¼0

; ð5Þ

where expð− R
ddx

ffiffiffi
g

p
ϕDϕÞ ¼ 1.

For a stationary background, the logarithmic part of the
one-loop determinant comes from

−
1

2
logdet0D¼

�
1

ð4πÞd2
Z

β

0

dtAd=2ðβ;…Þ−n0

�

logLþ �� � ;

ð6Þ
where Ad=2ðβ; …Þ ¼ R

dd−1x
ffiffiffi
g

p
ad=2ðx; xÞ. For odd-

dimensional spacetimes, the Seeley-DeWitt coefficient
aðd=2Þðx; xÞ vanishes due to the lack of a diffeomor-
phism-invariant scalar function of the metric with scaling
dimension d [16]. The advantage of working in 11D is then
clear, as only the zero-mode contributions remain. The
structure of the logarithmic term is then given by

logZ½β;…� ¼
X

fDg
ð−1ÞDðβD − 1Þn0D logLþΔFGhost þ � � � ;

ð7Þ

where the ghost contributions are treated separately, as in
Ref. [17], and βD is due to the integration over zero modes,
Eq. (5), in the path integral, as studied in various cases of
logarithmic contributions to the black hole entropy and the
one-loop partition function [17–20].
Magnetically charged AdS4 black holes:Our task at hand

is thus to ssxenumerate the zero modes of the fluctuations
in the AdS4 magnetic black hole background. These black
holes were originally obtained in Ref. [21], more recently
discussed in Ref. [22], and reviewed in Ref. [1]. They are
solutions of N ¼ 2 gauged supergravity with three vector
multiplets, and with prepotential and FI gauging parameters
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F ¼ −2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X0X1X2X3

p
; ξΛ ¼ 1

2
; Λ¼ 1;…;4: ð8Þ

The family of black holes admits background fluxes Fa,
a ¼ 1;…; 4 over a Riemann surface horizon Σg. The BPS
condition requires

1

2π

X

a

Z

Σg

Fa ¼ χðΣgÞ: ð9Þ

The solutions are parametrized by four fluxes na and the
genus of the horizon, g, subject to the above BPS
constraint. The metric of the solution can be put in the form

ds2 ¼ U2ðrÞdτ2 þ U−2ðrÞdr2 þ h2ðrÞds2Σg
; ð10Þ

whereUðrÞ ¼ eKðrÞr2(1 − ða=2gr2Þ)2 and hðrÞ ¼ 2eKðrÞr2
in the extremal case. A more comprehensive review,
including nonextremal solutions, is found in Ref. [23].
These black holes may be uplifted as solutions to 11D

supergravity, with fields consisting of a metric gμν, a three-
form field Cμνρ, and a gravitino Ψμ. From an 11D perspec-
tive, we are interested in their zero-mode fluctuations on a
backgroundwhich is locally of the formM4 × S7, whereM4

has the metric given by Eq. (10), and the 7-sphere is
squashed in the process of turning on magnetic flux.
Given an 11D kinetic operator, one can decompose it into
anM4 part and aS7 part. Since the compactness ofS7 leads to
non-negative eigenvalues, zero modes of the 11D super-
gravity fields are thus simultaneously zero modes inM4 and
S7. As a result, we only need to consider the massless
Kaluza-Klein sector, corresponding to the fields of 4D
N ¼ 8 gauged supergravity, and to seek out their zero
modes in the AdS4 black hole background.
Metric and fermion zero modes:From a four-dimensional

perspective, the fluctuating fields we must consider include
the metric, p forms, and fermions. We first demonstrate that
the metric and fermions do not have any zero modes in the
black hole background. This leaves the p forms, which we
turn to below. For the metric, a zero mode requires a pure
gauge mode with a non-normalizable gauge parameter. To
show it cannot exist, it is enough to focus on the asymptotic
metric,

ds2 ¼ dr2

r2
þ r2ðdt2 þ ds2Σg

Þ: ð11Þ

For a pure gauge deformation, hμν ¼ ∇μην þ∇νημ,
normalizability demands

hrr ¼ 2∇rηr ∼ 1=r4;

hri ¼ ∇rηi þ∇iηr ∼ 1=r2;

hij ¼ ∇iηj þ∇jηi ∼Oð1Þ: ð12Þ

Thus, asymptotically ηi ∼ 1=r and ηr ∼ 1=r3. As a result,

kηk2 ¼
Z

ffiffiffi
g

p
gμνημηνd4x ∼

Z
∞
ðr4η2r þ η2i Þdr < ∞; ð13Þ

and the gauge parameter is thus normalizable.
A similar argument can be made for the gravitino to

show the absence of zero modes. In particular, potential
gravitino zero modes correspond to would-be pure gauge
modes ψμ ¼ Dμϵ (where Dμ is the supercovariant deriva-
tive); however, with non-normalizable spinor ϵ. Working
with the metric (11), we can see that ϵ ∼ 1=r2 is required for
ψμ to be normalizable. Since this makes ϵ normalizable as
well, we conclude that there are no gravitino zero modes in
this background.
p-form zero modes:We now turn to an examination of

p-form zero modes. Recall that, for zero modes of Ap in a
compact space, one requires hdAp; dApi ¼ 0 with respect
to the standard inner product on p forms. This amounts to
requiring Ap to be closed. But Ap and Ap þ dαp−1 are
gauge equivalent, and the redundant contributions in the
path integral are canceled by the Faddeev-Popov procedure.
Therefore, the number of the zero modes is the dimension
of the pth de Rham cohomology.
We are, of course, interested in a noncompact space, in

which case there are several complications, especially with
infinite volume. First, the physical spectrum only includes
forms with finite action, as the weight in the Euclidean path
integral is e−S. Second, for a non-normalizable p − 1 form,
the gauge transformation dαp−1 can be normalizable and
included in the physical spectrum, yet the Faddeev-Popov
procedure can only cancel gauge transformations with
normalizable αp−1. The result is a physical spectrum with
some pure gauge modes with non-normalizable gauge
parameters, a situation which is ubiquitous in one-loop
gravity computations in AdS [18,20]. Third, there are
usually infinitely many such modes, making the number
of zero modes infinite. Mathematically, the first two com-
plications lead one to consider L2 cohomology,Hp

L2ðM;RÞ,
by replacing the deRhamchain complexwith one consisting
of L2 p forms whose exterior derivative is also L2 [24]. The
third complication simply states that dimHp

L2ðM;RÞ can be
unbounded.
A further subtlety in the noncompact case is the differ-

ence between Hp
L2ðM;RÞ and Hp

L2ðM;RÞ, the space of L2

harmonic p forms. As in Ref. [25], a transverse condition
on the gauge field is imposed when the heat kernel method
is applied. It is, therefore, more precise to identify the space
of concern to be Hp

L2ðM;RÞ. The number n0p of p-form
zero modes is then given by the regularized dimension

n0p ¼ dimRHp
L2ðM;RÞ ¼

Z

R

X

n

An
p ∧ ⋆An

p; ð14Þ
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where fAn
pg is a set of orthonormal basis functions, and the

integral is defined as the finite piece after regularization.
Before turning to a full accounting of zero modes, we

make an observation that will prove useful below. When the
manifold is compact, the Euler characteristic is given by
χðMÞ ¼ P

pð−1Þp dimHpðM;RÞ, and a similar relation
still holds for noncompact manifolds in the class known as
conformally compact manifolds (see Corollary 8.1 in
Ref. [26]). A conformally compact manifold is a manifold
with a boundary whose metric admits expansions near the
boundary

ds2 ¼ du2

αðuÞ2u2 þ
hijdxidxj

u2
; ð15Þ

where the boundary is at u ¼ 0, with αð0Þ ≠ 0 and hijð0Þ
well defined. For such a manifold of even dimension it was
proved in Ref. [26] thatHi

L2 ¼Hk
DRðM;∂MÞ for i < ðn=2Þ,

and Hi
L2 ¼ Hk

DRðMÞ for i > ðn=2Þ. The appropriate modi-
fication of the Gauss-Bonnet theorem states

Z
Reg

PfðRÞ ¼ 2
X

i<n
2

ð−1Þi dimHi
DRðM; ∂MÞ

þ ð−1Þn2dimRH
n
2

L2ðM;RÞ; ð16Þ

where Hi
DRðM; ∂MÞ stands for the relative de Rham

cohomology, and the Gauss-Bonnet integral is regularized.
It follows from the definition that an asymptotic AdS
manifold is a conformally compact manifold and Eq. (16)

applies to determine dimRHðn=2Þ
L2 ðM;RÞ for the AdS4 black

hole. Indeed, an explicit version of the above formula was
applied in Ref. [27] to elucidate aspects of quantum
inequivalence in AdS4.
In applying the thermodynamic entropy (3), we take the

extremal limit of the nonextremal AdS4 black hole. In this
case, the topology of the nonextremal black hole is
homotopic to its horizon Σg due to the contractible (t, r)
directions. Thus, the Euler characteristic of the nonextremal
black hole is simply χBH ¼ 2ð1 − gÞ. It also indicates that
all but the second relative de Rham cohomology vanish.
Therefore, using Eq. (16), one obtains

n02 ¼ dimRH2
L2ðM;RÞ ¼

Z
Reg

PfðRÞ ¼ χBH ¼ 2ð1 − gÞ;

ð17Þ

and moreover, these are the only possible zero modes in the
black hole background.
The regularized dimension, n02, can be negative for

higher genus. In fact, this is a general feature of regularized
dimensions defined as above. For example, in the case
of AdS2, dimR H1

L2ðAdS2;RÞ ¼ −1 and such negative

dimensions occur in various computations of the macro-
scopic logarithmic contributions to BPS black holes in
asymptotically flat spacetime [19,20].
Two-form zero modes from 11D supergravity:What we

have seen above is that the logarithmic correction only
comes from two-form zero modes in the asymptotically
AdS4 black hole background. This result is essentially the
same as in Ref. [17]; however, with the difference that here
the 11D space is only locallyM4 × S7, whereM4 is the AdS
black hole. [This difference manifests itself as n02¼χAdS¼1

for global AdS4 with an S3 boundary, in contrast to Eq. (17)
for the black hole.] However, the Kaluza-Klein procedure,
when performed properly, is equally valid in both cases.
The straightforward reduction of 11D supergravity on

squashed S7 does not yield any two-forms in four dimen-
sions, as there are no nontrivial 1-cycles for the 11D three-
form Cμνρ to be reduced on. However, the quantization of
Cμνρ introduces 2 two-form ghosts that are Grassmann odd,
3 one-form ghosts that are Grassmann even, and 4 scalar
ghosts that are Grassmann odd [28], and the two-form
ghosts will contribute to the log term.
The 11D two-form ghost A2 has action

S2 ¼
Z

A2 ∧ ⋆ðδdþ dδÞ2A2; ð18Þ

and the logarithmic term in the one-loop contribution to the
entropy is thus, according to Eqs. (4)–(7),

logZ1−loop½β;…� ¼ ð2 − β2Þn02 logLþ � � � ; ð19Þ

where β2 comes from integrating the zero modes in the path
integral, and the minus sign takes care of the Grassmann-odd
nature of A2. The zero-mode path integral becomes simplyR ½dA2�jzeromodes, and to find the logarithmic contribution in
this term, one looks at the L dependence by dimensional
analysis, as in Ref. [17]. The properly normalized measure

is
R
d½Aμν� expð−L7

R
d11x

ffiffiffiffiffiffiffi
gð0Þ

p
gð0Þμνgð0ÞρσAμρAνσÞ ¼ 1,

where we single out the L dependence of the metric,

gð0Þμν ¼ ð1=L2Þgμν. Thus, the normalized measure is
Q

xdðLð7=2ÞAμνÞ. For each zero mode, there is an Lð7=2Þ

factor. Thus, in the logarithmic determinant, one has
β2 ¼ ð7=2Þ. Combining Eqs. (17) and (19), the logL
contribution to the thermal entropy in the extremal back-
ground is thus

logZ1−loop½β;…� ¼ −3ð1 − gÞ logLþ � � � : ð20Þ

The extremal black hole entropy:The coefficient of the
logarithmic term in Eq. (20) does not depend on β. In fact,
due to the vanishing of the Seeley-DeWitt coefficient, it can
only depend on β through regularized n0p’s, which, due to
the asymptotic AdS condition, are topological. Therefore,
Eq. (3) gives simply S1−loop ¼ −3ð1 − gÞ logLþ � � �.
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As this is β independent, it is also valid in the extremal
limit, β → ∞. Finally, the AdS=CFT dictionary establishes
that L ∼ N1=6, leading to a logarithmic correction to the
extremal black hole entropy of the form

S1−loop ¼ −
1 − g
2

logN þ � � � ; ð21Þ

which perfectly agreeswith themicroscopic result in Eq. (2).
Conclusions.—It is worth highlighting that the super-

gravity one-loop computation is universal in the sense that it
applies to any asymptotically AdS4 black hole that can be
embedded in 11D supergravity under themild condition that
the seven-dimensional compactification manifold has van-
ishing first homology. There is a similar universal behavior
in the one-loop effective action inAdS4 [17], whichmatches
perfectly with the logarithmic correction of the supersym-
metric partition function on S3. It would be interesting to
establish the universality of the logarithmic corrections to
the black hole entropy from the field theory side as well.
Our precise example, when taken in conjunction with

Refs. [7] and [10], clarifies that the quantumentropy function
that has been so successful in the context of asymptotically
flat black holes needs to be revisited in the context of
asymptotically AdS black holes. Arguably, the connection
between degrees of freedom residing at the horizon and other
potential hair degrees of freedom needs to be better under-
stood by revisiting previous approaches [29,30].
It was crucial in our result that we took a particular

thermal-based limit to the extremal black hole, agreeing
with some observations in the literature [9,31]. This
limiting procedure raises the specter that perhaps super-
symmetric computations contain some information about
slightly nonextremal systems, in which case a window into
capturing more dynamical information, such as Hawking
radiation, could be opening.
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