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In this Letter, we take the first step towards construction of nontrivial Lagrangian theories of higher-spin
gravity in a metriclike formulation in three dimensions. The crucial feature of a metriclike formulation
is that it is known how to incorporate matter interactions into the description. We derive a complete
classification of cubic interactions for arbitrary triples s, 55, s3 of massless fields, which are the building
blocks of any interacting theory with massless higher spins. We find that there is, at most, one vertex for any
given triple of spins in 3D (with one exception, s; = s, = s3 = 1, which allows for two vertices).
Remarkably, there are no vertices for spin values that do not respect strict triangle inequalities and contain
at least two spins greater than one. This translates into selection rules for three-point functions of higher-
spin conserved currents in two dimensional conformal field theory. Furthermore, universal coupling to
gravity for any spin is derived. Last, we argue that this classification persists in arbitrary Einstein

backgrounds.
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In the quest for a simple model of quantum gravity,
particular optimism is related to higher-spin (HS) gravity
theories in three dimensions (see, e.g., [1,2]). This is related
to the fact that these theories bypass all the no-go theorems
that put stringent constraints on HS gravity theories in
D > 4. Not only do they allow for Lagrangian formulation
[3], finite HS spectrum [4], Minkowski background [5],
and color decoration [6], which are problematic for known
theories in higher dimensions, but they also allow for
nontrivial solutions [7] and possess infinite-dimensional
asymptotic symmetries [4,8] familiar from two dimensional
conformal field theories (CFTs). Despite all of these
simplifying properties, one important but basic problem
still remains to be understood in these theories. It is the
compatibility of matter coupling with the local Lagrangian
formulation. In this Letter, we make the first step towards
the answer to this question.

Even though matter-coupled HS gravity [2] has been
known for twenty years and is at the center of the
conjectured [9] duality between HS gravity on AdS; and
CFT, models with W symmetries, a Lagrangian description
is still missing. The simplicity of general relativity and
(colored) HS Gravity in three dimensions [2] formulated
as Chern-Simons theories with noncompact gauge groups
[10] is lost as soon as one adds matter into the picture.
A simpler set up for addressing matter coupling is
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metriclike formulation [1,11,12], where, no longer making
use of Chern-Simons actions, one loses the simplicity of the
gauge sector.

The question of the Lagrangian formulation of HS
theories is a long standing puzzle, addressed, in particular,
through attempts for perturbative constructions of the
action, in the spirit of the so-called Fronsdal program
[13], that resulted in full classification [14,15] of cubic
interactions in dimensions greater than three (see, also,
[16-18] for generating functions and discussion about
possible relation to string theory). This classification is
in one-to-one correspondence with that of conformal three-
point correlators of conserved currents in dimensions lower
by one via the AdS/CFT dictionary [15,19].

In three dimensions, unlike in higher dimensions, HS
interacting theories do not require a nonzero cosmological
constant [20,21]. Together with the fact that the Fronsdal
program is technically simpler in Minkowski space com-
pared to (A)dS, this makes the three dimensional flat space
a preferred playground for the problem of Lagrangian
formulation for nonlinear HS theories with matter content.
Still, the systematics of three-linear interactions in D = 3 is
not yet known. Indeed, there are only a handful of works
on HS interactions in three dimensions in the metriclike
formulation (see, e.g., [1,11,12]). In this Letter, we start an
investigation in this direction, proposing a classification of
parity-even cubic vertices.

The main technical difference between the three-
dimensional and the higher-dimensional classifications of
cubic vertices for HS fields is that in D = 3 there exist
Schouten identities, that should be taken into account in the
covariant Noether equations for cubic vertices. Relevant
Scouthen identities exist for cubic vertices of symmetric
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tensor fields in D < 4. Taking them into account has been
shown to result in less vertices in D = 4 compared to those
in D>4 [15]. As we will show in this work, the conse-
quences in D = 3 are even more drastic.

The cubic vertices for massless fields can be constructed
order by order in traces and divergences of the fields
involved [14], starting from the piece that does not involve
any trace or divergence, which is usually referred to as the
traceless-transverse (TT) vertex. In this Letter, we will work
at the level of TT fields. Therefore, we do not solve the
problem of finding off-shell vertices, but rather that of
classifying them. In a sense, the results of this Letter can be
regarded as the three-dimensional analogue of the light-
cone classification in higher dimensions [22,23].

Covariant classification [14] of cubic vertices in dimen-
sions greater than three has been reviewed using simplified
notation in [15]. We will adopt the same notations here.
A spin s massless field is parametrized by a symmetric sth
rank tensor ¢, , . We will contract all the indices of these
fields with vector variables, a*

¢(S)(x’a) :—‘qﬁ”l ..... ”Yaﬂl ...a.ux’ (l)
s! M

to make the symmetry of indices manifest, as well as to
simplify index contractions between the fields. We follow
the Noether procedure, assuming that the Lagrangian can
be expanded in powers of a small parameter g, starting from
the free action [13], given by £

L=L?+gL0) +0(4). (2)

The cubic action is a sum of different vertices

LO =St oLl (3)
{s;}.n

where n is a parameter that counts independent vertices
for a given triple of spins s; > s, > 53 (number of free
parameters, that are not fixed by the requirement of gauge
invariance). In the following, we will completely discard
the terms proportional to traces, divergences, Laplacian
operators, and total derivatives and use the equals sign
“=" between two vertex operators that are equivalent
modulo terms containing these operators. In this way,
we will only keep track of TT terms. The building blocks
of TT cubic vertices are the following operators of scalar
contractions between the fields ¢;(x;, a;)(i = 1,2,3), and
derivatives acting on them (see [15])

(i+3=i). (4)

Vi :8ai .axm’ i =0 .8%‘71’

diyy
Note that this choice of variables fixes the partial integra-
tion freedom and the field redefinition freedom, as in
[14,15]. The operator of gauge variation, é¢; = a; - 0;€;,
acting on the TT vertex gives

5i£(3) = (yi—laz,+l - yi+laz,-_1)£(3) =0, (5)

which should vanish for on-shell TT fields. The solution
to (5) in any dimensions is given by

LO =V, G)prrs,  G=y121+y220+y323.  (6)

For given spins s; > s, > s3, we have (n = 0,1, ..., 53)

Vi sy = o sy Yy TGR (7)

Schouten identities and 3D vertices.—The Schouten
identities in three dimensions are contractions of arbitrary
tensors with generalized Kronecker delta

Sl = 415

,,,,, L L aenet =0, (8)

H3 %y

where square brackets denote complete antisymmetriza-
tion. Such identities allow for the existence of additional
gauge invariant vertices as compared to (7), namely, those
which obey

6;V = Scouten identities = 0, 9)

for all i. One can systematically construct all the elementary
Schouten identities as all possible contractions of (8) with
operators 8(,?, 0% (D = 3). The complete list of parity-even
elementary Schouten identities is given as

yiziG=Yi1Zis1Vis1Zign =0, (G—y;z;)*=0, (10a)
)’i)’iﬂ(G - )’iZi) =0, (1Ob)
yivi, =0, ¥y =0. (10c)

Note that we have grouped the identities into two-, three-,
and four-derivative expressions.

In the following, we will state the results on classification
of parity-even cubic vertices of massless fields in three
dimensions. More details on their derivation are provided
in [24].

Vertices with scalar and Maxwell fields.—To start with,
we take the simplest example, where one of the fields is a
scalar (s; > s, > 53 = 0). Our analysis suggests, that there
are only two Lorentz invariant vertex operators compatible
with gauge symmetry of massless fields with spin. The first
one is

V00 = V1 (11)
while the second one is
Vs,l,o = )ﬁ)’z- (12)

We find that for the vertices involving scalar fields, the
difference in three dimensions as compared to higher
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dimensions is the absence of vertices of interactions of the
scalar with two fields of spins both greater than one.

Now, we turn to the next simple example—vertices with
Maxwell fields (s; > s, > 53 = 1). We find two nontrivial
solutions in this case. First, one requires s, = 1, and is the
same as in higher dimensions

Vi1 =y'G, (13)

and reproduces the Yang-Mills vertex for s = 1. The
second solution exists only in three dimensions for any
s; = s, = s. It has three derivatives for any s

Vsl = V1yayaz . (14)

In higher dimensions, the number of derivatives rises with s
for (s, s, 1) couplings, and a three-derivative vertex exists
only for s =1, 2. Instead, in D = 3, the Maxwell field
addresses all the spins s > 2 in an equal manner, but
distinguishes them from spins s =0, 1, that allow for
coupling with one derivative. Only for s = 1 are there both
vertices—one-derivative and three-derivative. This is the
only example in three dimensions in which more than one
vertex for a given triple exists.

Coupling to gravity.—We confirm the presence of
minimal coupling to gravity for any spin [20,21] at the
expense of deforming the gauge transformation of the
gravitational field itself. The corresponding vertex is
given by

Viso =325 (sy121 + $y222 + ¥323), (15)

which is gauge invariant due to identities (10b).
Remarkably, this expression makes sense for any s,
including s = 0. In the case of s =2, one has to use
identities (10a) to show that (15) is equivalent to the
conventional massless spin two self-interaction (Einstein-
Hilbert) vertex in any dimensions V,,, = G°.

General triples.—Our analysis suggests (see Sec. IV of
Ref. [24]) that all the vertices with s; > s, > 2 have
common features. There is a unique vertex if the three
spins satisfy strict triangle inequalities: s;.; + s;_; > s,.
We find no cubic vertices for triples, violating these
inequalities. All of the cubic vertices with s; > s, > 2 fall
into two classes—two derivative vertices (for an even sum
of spins) and three derivative vertices (for an odd sum).

The case of two-derivative vertices corresponds to the
even sum of spins. It is straightforward to show using
the identities (10a) that the basis of independent mono-
mials, second order in y;z; is given by three monomials
Vit1Zix1Yie12i-1 ~ ¥:iz;G. Therefore, the most general
ansatz for the two-derivative TT vertex in this case is

V = (ay121 + @yrzo + a3y323)G2)' 25725, (16)

Gauge variations of this vertex will be three-derivative
expressions. It is not hard to see, that using the identities
(10a) and (10b) one can bring any monomial of these
variations into a form, containing all three y’s

6V = la(nipy — nimy) + (g — i) (ny + iy + 1))
X Y1¥2Y32i2) 25725 (17)

Gauge invariance conditions with respect to all three
variations admit a unique solution, up to the overall
constant

a=ni_y+n+1=s5-1 (18)

therefore, the vertex can be written as

ny _ny_nz

V=[(s1=1D)yiz1 + (52— 1)yr25 + (55— 1)y323]Gz}" 25° 25,

1
”izi(si—1+si+l_si)_120' (19)

This vertex reproduces the minimal coupling to spin two
(15) as a particular case. It can be made manifest, rewriting
the vertex (19) in an equivalent form

ny _ny _nz+

Vi, s = V321'22°23 1[(S2 + 53 =2)y124
+ (53 + 851 = 2)y220 + (53 — D)yszz].  (20)

For s3 =2, s; = s, =, this reproduces the minimal
coupling to gravity, given in (15). Now, we understood
that the minimal coupling to gravity is a part of a bigger
family of two-derivative vertices in three dimensions, that
exist for every triple of integer spins greater than one, with
an even sum and satisfying strict triangle inequalities.

The case of three-derivative vertices corresponds to the
odd sum of spins. As long as the triangle inequalities
between the spins are satisfied, any three-derivative vertex
monomial contains third order polynomials in y;z;’s and
can be uniquely written in the form containing all the y;’s
(we omit the arbitrary coupling constant in front)

. ny_n,_n3
Vs].sz,s_g - yly2y3zllzz 237

ni_;+n; + 1= Si. (21)

This expression is gauge invariant due to identities (10c).
This vertex exists for any spins with the odd sum s; 45,453
satisfying strict triangle inequalities. Three-derivative ver-
tices (s, s, 1) and (s + 1, s, 2) are of this type.

Because of the four-derivative Schouten identities (10c),
any nontrivial vertex term with n > 4 derivatives contains
at least n — 1 powers of one of the y;’s. One can carefully
consider all options and show that all the gauge invariant
cubic vertices with more than three derivatives are those
with scalar and Maxwell fields. We conclude, that there are
no nontrivial interactions of fields with spins s; > s, > 53 >2
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with more than three derivatives. Since we already studied
scalar and Maxwell cases in detail, this completes the
classification of parity-even vertices of massless fields in
three dimensions.

Discussion.—We have classified all parity-even cubic
interactions between massless bosonic fields in three
dimensions. A remarkable difference of three dimensional
vertices compared to higher dimensional ones is that for
any three spins (s, $,, $3), there is at most a unique vertex
(with the only exception of s; = 5, = 53 = 1). We refer to
massless fields of spin 0 and 1, scalar and Maxwell fields,
as “matter fields” since they carry propagating degrees of
freedom in three dimensions. The vertices that coincide
with the higher dimensional ones are all those containing
at least two matter fields, spin two self-interaction (cubic
vertex of Einstein-Hilbert action, see, e.g., [34]) and spin
three couplings (3, s, s) with s < 3. One more curiosity of
this classification is that spin three couples to all spins
through (s, s, 3) couplings “universally” in three dimen-
sions, similar to the spin two case (the latter property is
associated to the equivalence principle)—all of these
vertices have three derivatives.

The spin values, for which the vertex is absent in D = 3,
are those violating strict triangle inequality and containing
one matter field at most. The vertices with s; > s, > 2 have
two (three) derivatives for an even (odd) sum of spins in the
vertex, and are non-Abelian. The only triple of spins that
allows for more than one cubic vertex is s; = s, = 53 = 1.
In this case, there are two vertices—the Yang-Mills (YM)
one, Vyy = G, and the F? one, V = y,y,y3, both requiring
a fully antisymmetric color factor.

All cubic vertices in flat space can be uplifted to (A)dS
space, therefore, via the AdS/CFT dictionary, the classi-
fication of cubic vertices in flat space should conform to the
structure of three-point functions in 2D CFTs (see, e.g.,
[19]). Not only can the vertices described here be lifted to
(A)dSs, but they can also be written in arbitrary Einstein
background, covariantizing derivatives and treating gravity
in a full nonlinear manner at the expense of deforming the
gauge transformation of the metric itself, enlarging the
isometry algebra to involve HS killing tensors (see, e.g.,
[35]). This is straightforward only in three dimensions and
cubic vertices, due to the triviality of the Weyl tensor
[1,20,21]. Although Einstein equations themselves get
deformed due to couplings to HS fields, Einstein spaces
are still classical solutions of the full theory with vanishing
HS fields. The back reaction to Einstein equations should
be taken into account when constructing quartic and
higher order vertices, while it is not relevant at cubic order
in HS fields.

The classification provided in this work is completely
model independent. In order to compare to 2D CFT three-
point functions, we notice that the HS Fronsdal field with
spin s corresponds to a conserved current on the boundary
which has two nonzero components—chiral and antichiral

quasiprimaries with a conformal weight of s. The three-point
functions of these currents are uniquely fixed by their
conformal weights (see, e.g., [36]) and result in a unique
parity-even three-point function for given triplet of spins
when the chiral and antichiral pieces transform into each
other under parity transformations; therefore, they allow for
only one free parameter—a coincident overall constant. This
is in agreement with our findings. The absence of the cubic
vertices for certain spin values is in agreement with the
structure of the 3D HS algebra hs[1], that has vanishing
structure constants for three spins violating triangle inequal-
ities [35]. As opposed to higher dimensions, there are no
Abelian vertices in three dimensions for s; > s, > 2. To our
best knowledge, it has not been observed in the 2D CFT
literature that the three-point correlators of quasiprimaries
with spins violating triangle inequalities must be zero.
Therefore, we have uncovered a novel model-independent
feature of 2D CFT’s, which is, of course, consistent with
known models with W-algebra symmetries [37]. Further
discussion can be found in Supplemental Material [24] and
the sequel paper [38].

An immediate application of the results presented here is
the construction of the metriclike action up to cubic order
for the Prokushkin-Vasiliev theory [2] with a symmetry of
hs[2] for arbitrary 4. In the aforementioned theory, this free
parameter manifests itself as the mass for the scalar field
that appears as a vacuum expectation value of an auxiliary
field. The mass of the scalar does not introduce compli-
cations compared to the massless case (see, e.g., [39,40]).
We hope to report on this program in the near future.
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