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A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems
with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main
universality classes. The classification is based on behavior of equilibrium dynamical correlations of
the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling,
while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different
exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are
expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics
and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show
completely different system-size dependence of current cumulants in these two systems. We explain this
numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating
hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the
latter system, we derive the cumulant-generating function from a more microscopic theory, which also
gives the same system-size dependence of cumulants.
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The properties of energy and particle current fluctuations,
in various systems both in and out of equilibrium, are areas
of much recent activity. A number of papers have found
unexpected universal features in these fluctuations in diverse
systems [1–11]. For example, it has been shown that particle
transfer in the symmetric exclusion process and charge
transfer across disordered conductors have exactly the same
value for a particular combination of current cumulants [9].
Systems with anomalous energy transfer have been of
great interest both from the theoretical [12–14] and exper-
imental [15,16] point of view and an open question is the
properties of current fluctuations in such systems. An earlier
study [11] considered a hard particle gas on a finite circle of
length L and looked at the net energy q transferred across
a point in a large time interval τ (taking the limit of fixed L
and τ → ∞). Simulations indicated large fluctuations with
the cumulants hq2ic=τ ∼ L−1=2 and hq4ic=τ ∼ L1=2, in sharp
contrast to diffusive systems for which hq2ic=τ ∼ L−1 and
hq2nic=τ ∼ L−2 for all n > 1.
In this Letter, we study energy current statistics in

interacting particle systems with anomalous energy trans-
port. We consider two different models, namely, the
alternate mass hard particle gas [17–19] and the momen-
tum exchange model [20,21]. In both cases, energy,
momentum, and volume are conserved variables. These
two models have been widely studied in the context of
anomalous heat transport [13,14] where they represent
examples of two universality classes. The thermal con-
ductivity κ in such systems shows divergence with system

size L as κ ∼ Lα, with α ¼ 1=3 or 1=2 for the two classes.
Recent work on the fluctuating hydrodynamic theory
(FHT) [22–27] also predicts that these two models belong
to different universality classes. One of the main aims of
this Letter is to look at universal features of current
fluctuations. We find from simulations that the two
models give completely different results for fluctuations
and show how the results can be understood from a
simple model of Lévy walkers [28,29] with inputs
from FHT, which allow us to compute the cumulant-
generating function for current fluctuations (hence the
large deviation function).
We consider N particles with positions and momenta

described by fzx; pxg, for x ¼ 1;…; N, and moving on a
periodic ring of size L, so that the particle density
ρ ¼ N=L ¼ 1. The particles are assumed to only have
nearest-neighbor interactions. In the alternate mass hard
particle gas, point particles move ballistically in between
energy-momentum conserving collisions. The masses of
the particles are chosen as m2x ¼ ma and m2x−1 ¼ mb for
x ¼ 1; 2;…; N=2 (with N chosen to be even). The case
ma ¼ mb is integrable, while for ma ≠ mb one numerically
observes ergodicity and equilibration (for N > 3) [17–19],
and it is expected that the system is nonintegrable. The
system is taken to be in equilibrium (configurations are
chosen from a microcanonical ensemble with fixed energy
E and zero total momentum) at time t ¼ 0, and we consider
the statistics of the total energy transferred qðy; τÞ across a
specified point y in a given time interval τ. For the hard
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particle gas, the energy flux at a spatial location y is given
by jðy; tÞ ¼ P

N
x¼1½mxvxðtÞ3=2�δ½y − zxðtÞ�.

The total energy flux in a fixed time interval is given by
qðy; τÞ ¼ R

τ
0 dtjðy; tÞ, and our interest is in the statistics of

this. On the ring geometry, the statistics is independent of y,
and we can equivalently (for τ ≫ L=c, where c is the speed
of sound) look at the statistics of the average integrated
current, namely,

QðτÞ ¼ 1

L

Z
L

0

dyqðy; τÞ: ð1Þ

For the momentum exchange model [21], the Hamiltonian
dynamics of a harmonic chain is supplemented by a
stochastic process, which causes randomly chosen near-
est-neighbor particles to exchange their momenta at a
specified rate γ. Both energy (including now kinetic and
potential energy parts) and momentum (and particle number)
are conserved, and one can again define the energy current.
Simulations.—We evaluate up to six cumulants and

compare them with the predictions of the theory. For the
case of the hard-point gas, a system of N ¼ L particles was
taken, with masses of alternate particles set at 1 and 2.62.
This choice of mass ratio is not crucial, and anything not
too close to 1 should work [30]. The initial velocities of
the particles are chosen from a microcanonical ensemble,
such that total momentum is zero and the total energy is
E ¼ N, which corresponds to a temperature T ¼ 2 (with
Boltzmann’s constant kB ¼ 1). The initial positions of the
particles are chosen from a uniform distribution between 0
and L. An event-driven molecular dynamics simulation was
performed, in which successive update time steps are taken
to be the time differences between subsequent collisions in
the full chain. After some initial transients, the system is
run for a total time of Rτ and we obtain QrðτÞ for
r ¼ 1; 2;…; R. The nth moments are then computed as
Cn ¼ hQnðτÞi ¼ ð1=RÞPR

r¼1Q
n
r ðτÞ. We then compute the

cumulants. The number of realizations averaged over
was R ∼Oð109Þ.
Cumulants obtained from the two definitions of heat

flux, Q in Eq. (1) or q, were evaluated. These behave
differently at finite time, but both exhibit a linear growth for
large τ and hQnic=τ and hqnic=τ appear to converge to the
same value, as is expected [11]. Here we show results only
for Q. In Fig. (1), we show the time dependence of the
cumulants for a system of size N ¼ 400. Following [11],
we plot the ratios hQn

τ ic=τ versus 1=τ and by extrapolating
the linear region of the graph, extract the asymptotic values.
These asymptotic values of the cumulants have been
plotted in Fig. (2). We find

C2∼N−1=2; C4∼N1=2; and C6∼N3=2: ð2Þ

For n ¼ 2 and 4, our results agree with those of [11], while
those for n ¼ 6 are new results.

For the momentum exchange model also, our simula-
tions are done in the zero total momentum ensemble (with
spring constants, masses set to one, and exchange rate
γ ¼ 1). In this case, it appears numerically challenging to
study very large system sizes, possibly because the fluc-
tuations are larger. Averages were done over R ∼Oð107Þ
realizations for sizes up to N ¼ 64. However, in this model,
asymptotic results are known to be reproduced even at
relatively small system sizes [21]. The values of cumulants
obtained by linear extrapolation have been plotted in
Fig. (3). In this case, we find

C2 ∼ N0; C4 ∼ N2; and C6 ∼ N4: ð3Þ
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FIG. 1. Hard particle gas: plot of second, fourth, and sixth
cumulants of integrated current divided by τ plotted against 1=τ for
a system of sizeN ¼ 400. The solid lines indicate the extrapolation
procedure used to obtain the asymptotic value of the cumulant.
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FIG. 2. Hard particle gas: plot of second, fourth, and sixth
cumulants of the integrated energy current across a given point on
a ring of size L with N ¼ L particles, in the alternate mass hard
particle gas. The higher cumulants are multiplied by constant
numbers to make the plots clearer. The dashed lines show the
expected slopes.

PHYSICAL REVIEW LETTERS 120, 220603 (2018)

220603-2



Note that for diffusive systems, one has C2 ∼ N−1 and
C2n ∼ N−2 for all n > 1 [11]. Thus, systems with anoma-
lous transport show a completely different scaling and
fluctuations are much larger. Below, we will present argu-
ments using the Lévy walk model [28,29], combining the
results of FHT that, as we will see, explain the system-size
dependencies completely. In addition, for the second
model, we perform a more explicit microscopic calculation
of the cumulant-generating function, which gives results
consistent with the simulations and also the Lévy walk
argument.
FHT and Lévy walk argument.—From the recent theory

of FHT for 1D fluids, the picture emerges of the heat
mode’s diffusive spread being modified by interactions
with sound modes, which themselves have Kardar-Parisi-
Zhang scaling (and diffusive scaling for special conditions;
see below). This interaction leads to the heat mode
eventually showing Lévy scaling. One can thus think of
the system as effectively a gas of independent Lévy
walkers. Indeed, this approach has independently been
used earlier to explain many observed features of anoma-
lous transport [28,29]. To be precise, we assume the system
to consist of a fixed number N ¼ ρL of particles that
perform independent Lévy walks on a ring of length L.
At a microscopic level, the Lévy walker is a spontaneously
formed heat packet, which then moves at speed c in
either direction due to its coupling to the two sound modes.
From FHT, a sound mode at wave vector k decays as
∼ expð−bjkjδtÞ and this means that the heat packet will
move in a given direction for a time interval t with
probability bjkjδ expð−bjkjδtÞ. Summing over all wave
vectors, we then find that the distribution of flight times
ϕðtÞ of the Lévy walkers has a power-law tail: ϕðtÞ ∼ t−βþ1

with β¼1þ1=δ. From FHT, the decay is given by δ ¼ 3=2

for the generic case, while δ ¼ 2 for the special case of zero
pressure and even potentials (relevant for the harmonic
exchange model). For a ring of finite size L, the smallest
k ∼ L−1 and so the flight time distribution will have a cutoff
at τL ∼ Lδ. This is the timescale over which the sound mode
spreads over the entire length of the system. With this basic
picture, we now proceed to estimate the cumulants of the
energy current.
As the walkers are independent, the cumulants of the

integrated currentQ are related to those of the displacement
xðτÞ of a single walker on the infinite line (in the steady
state). The number of times that a single walker crosses a
fixed point in the ring geometry is approximately xðτÞ=L.
Hence, in the steady state, where the distribution of particles
is uniform, the nth order of the cumulant is given by

hQnic ∼
N
Ln hxðτÞnic ¼

ρ

Ln−1 hxðτÞnic; ð4Þ

where ρ is the density on the ring. A straightforward
computation of the truncated Lévy walk model then gives
the following leading behavior for various moments:
hx2nic=ðc2nτÞ ∼ ht2ni=hti, n ¼ 1; 2; 3, where ht2ni ¼R τL
0 dtϕðtÞt2n [31]. We now use these in Eq. (4) to obtain
current fluctuations in the ring geometry. With the cutoff
τL ∼ Lδ, we get ht2ni ∼ Lð2n−βÞδ, while hti is a finite number;
hence, we get

hQ2nic
τ

∼ Lð2n−βÞδ−ð2n−1Þ n ¼ 1; 2; 3: ð5Þ

In general, we conjecture this result to be true for all n. We
then immediately find that the choices ðβ; δÞ ¼ ð5=3; 3=2Þ
and ð3=2; 2Þ reproduce the observed results for cumulants in
the hard-particle gas and the exchange model, respectively.
More explicit analysis for the momentum exchange

model.—In the framework of FHT, the second model we
studied corresponds to the special case of a symmetric
potential and zero pressure and belongs to a different
universality from the generic cases [24]. In this case, the
sound modes obey the diffusion equation, while the heat
mode is affected by nonlinear coupling to the sound modes.
Assuming Gaussian fluctuations of the sound modes, we
expect the stretch and momentum variables rðx; tÞ and
pðx; tÞ to satisfy the following Langevin equations,

∂rðx; tÞ
∂t ¼ ∇½pðx; tÞ�;

∂pðx; tÞ
∂t ¼ ∇½c2rðx − 1; tÞ þD∇½pðx − 1; tÞ� þ Bηðx; tÞ�;

ð6Þ

where the symbol ∇ is the discrete derivative that acts as
∇½AðxÞ� ≔ Aðxþ 1Þ − AðxÞ for arbitrary function A. The
variable ηðx; tÞ is white Gaussian noise with unit variance
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FIG. 3. Momentum exchange model: plot of second, fourth,
and sixth cumulants of the integrated energy current across a
given site on a ring with N particles. The higher cumulants are
multiplied by constant numbers to make the plots clearer. The
dashed lines show the expected slopes.
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and the strength B ¼ ffiffiffiffiffiffiffi
2D

p
ensures that equal-time corre-

lations at long times converge to the expected equilibrium
values, e.g., c2hrðx; tÞrð0; tÞi ¼ hpðx; tÞpð0; tÞi ¼ δx;0. In
fact, the two time correlations from these equations also
agree with the known exact form. Note that Eqs. (6) are
not microscopic equations, but hydrodynamic equations.
There is a third equation for the other hydrodynamic
field, namely, the energy, with a corresponding conserved
current (see [24]). The dominant part of the energy current
is given by jeðx; tÞ ¼ −c2rðx; tÞpðx; tÞ. This scales as
1=

ffiffiffiffi
N

p
, while the stochastic component scales as 1=N.

With the assumption that the fields r, p are described by
(6), we now proceed to evaluate the distribution of the
current. We define the discrete Fourier transform r̃ðq;ωÞ ¼P

N
x¼1

R
τ
0 dtrðx; tÞe−iðqx−ωtÞ=ðNτÞ, where q ¼ 2sπ=N and

ω ¼ 2nπ=τ and similar for the momentum and noise terms.
Plugging the Fourier representation of each variable into
(6), we solve for the stretch and momentum variables in
terms of noise variables,

p̃ðq;ωÞ ¼ −iωBpðe−iq − 1Þη̃ðq;ωÞ
−ω2 þ 2c2λq þ 2iωDpλq

; ð7Þ

r̃ðq;ωÞ ¼ iðe−iq − 1Þp̃ðq;ωÞ
ω

; ð8Þ

where λq ¼ 2ð1 − cos qÞ and the noise correlations are
given by hη̃ðq;ωÞη̃ðq0;ω0Þi ¼ δqþq0δωþω0=ðNτÞ.
The average integrated current Q can then be written as

Q ¼ c2

N

XN
l¼1

Z
τ

0

dtrðx; tÞpðx; tÞ

¼ c2τ
X
q;ω

r̃ðq;ωÞp̃ð−q;−ωÞ

¼ τ
X
q≠0

X
ω

Aðq;ωÞη̃ðq;ωÞη̃ð−q;−ωÞ; ð9Þ

where Aðq;ωÞ is given by

Aðq;ωÞ ¼ −
4Dpc2ω sin qλq

ðω2 − 2c2λqÞ2 þ 4D2
pω

2λ2q
: ð10Þ

The characteristic function ZðλÞ ≔ he−λQi, where the
average is over the Gaussian noise η̃ðq;ωÞ, leads to

ZðλÞ ¼
Y
q

Y
ω

he−λτAðq;ωÞη̃ðq;ωÞη̃ð−q;−ωÞi

¼
Y
q

Y
ω

Nτ

Nτ þ λτAðq;ωÞ : ð11Þ

For large τ, the function ZðλÞ has the large deviation form
ZðλÞ ∼ eμðλÞτ,with thecumulant-generating functiongivenby

μðλÞ ¼ −
1

2π

X
q≠0

Z
∞

−∞
dω

× log

�
1 −

λ

N

4Dpc2ω sin qλq
ðω2 − 2c2λqÞ2 þ 4D2

pω
2λ2q

�
: ð12Þ

It is difficult to perform this integration explicitly, but
the system-size dependence of the cumulants, given by
ðhQnic=τÞ ¼ ∂nμðλÞ=∂λnjλ→0, can be evaluated to give

hQ2nic
τ

¼ 1

N2n

X
q≠0

�
4Dpc2 sin qλq

�
2n
ð2n − 1Þ!

2π
I2n; ð13Þ

I2n ¼
Z

∞

−∞
dω

ω2n�
ðω2 − 2c2λqÞ2 þ 4D2

pω
2λ2q

�
2n : ð14Þ

In particular, we find

I2 ¼
π

2ab3
; I4 ¼

ðb2 þ 5aÞπ
16a3b7

;

I6 ¼
ð3b4 þ 21ab2 þ 63a2Þπ

256a5b11
;

wherea ¼ 2c2λq andb ¼ 2Dpλq [32]. Taking the continuum
limit, we set λq ¼ q2 with q ¼ 2sπ=N. Then we get
hQ2ic=τ ∼ N0, hQ4ic=τ ∼ N2, and hQ4ic=τ ∼ N4, which
reproduces the results from simulations and also the Lévy
walk argument.
Summary.—Recently, using FHT, it has been shown that

generic one-dimensional systems with conserved density,
momentum, and energy show anomalous transport and can
be classified into two principal universality classes. So far,
the signatures of anomalous transport and different uni-
versality classes have been seen in studies on decay of
equilibrium correlations and in nonequilibrium transport
measurements where one looks at scaling of current with
system size. In the present Letter, we show that current
fluctuations in equilibrium provide another method for
identifying anomalous transport behavior and identifying
universality classes. We presented results of numerical
simulations showing that the system-size scaling of energy
current cumulants is completely different for the two
universality classes predicted by FHT and also differs from
that for diffusive systems. This is explained by a phenom-
enological model where the energy is carried by Lévy
walkers with lifetimes determined by interactions with
sound modes. For the momentum exchange model,
which is in the same universality class as systems with
an even potential and zero pressure, we recover the scaling
properties from a direct microscopic computation of the
cumulant-generating function.
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It is of interest to see if results on current statistics in
other systems described by FHT [33,34] can also be
obtained using the ideas proposed here.
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