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One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical
QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the
communication channel as, for example, the error rate. This introduces a trade-off between the secret key
rate and the accuracy of parameter estimation in the finite-size regime. Here we show that continuous-
variable QKD is not subject to this constraint as the whole raw keys can be used for both parameter
estimation and secret key generation, without compromising the security. First, we show that this property
holds for measurement-device-independent (MDI) protocols, as a consequence of the fact that in a MDI
protocol the correlations between Alice and Bob are postselected by the measurement performed by an
untrusted relay. This result is then extended beyond the MDI framework by exploiting the fact that MDI
protocols can simulate device-dependent one-way QKD with arbitrarily high precision.
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Introduction.—Quantum key distribution (QKD)
exploits quantum physics to distribute secret keys between
distant users that have access to an insecure quantum
communication channel [1–4]. These secret keys can
then be used as one-time pads to achieve information-
theoretically secure communication [5]. AQKD protocol is
an explicit recipe to achieve this goal and typically
comprises two parts: a quantum part, where quantum
signals are transmitted through a quantum channel con-
necting two authenticated users (typically named Alice and
Bob) and then measured at the output of the channel, and a
classical part where, local classical information about the
state preparation and measurement outputs are processed to
extract a common, secret key.
One crucial part of classical postprocessing is parameter

estimation, a routine aiming at obtaining information about
the quantum channel connecting Alice to Bob. The task of
parameter estimation is similar to quantum channel (or
state) tomography (see, e.g., Ref. [6] and references
therein), though in this case one is not interested in
obtaining a full description of the quantum channel, but
only in those features that are relevant for the security of the
QKD protocol. Once the quantum channel is estimated, the
principles of quantum mechanics impose an upper bound
on the amount of information that has possibly leaked to a
potential eavesdropper. In general, local information with-
out classical communication is not sufficient to perform
quantum state tomography as well as parameter estimation
[7–9]. For this reason, it is required that Alice and Bob
exchange part of their local data in order to perform
parameter estimation. Obviously, all the classical data that
are communicated through an insecure channel must be

considered compromised. It follows that the more data are
used for parameter estimation, the lower the final secret
key rate. Vice versa, if less data are used for parameter
estimation, then statistical errors will make the estimation
less accurate.
In this Letter, we show that for continuous-variable (CV)

QKD protocols (as, for example, those in Refs. [10–20])
one can use, without loss of security, the whole local data
for both parameter estimation and secret key extraction.
This result is a consequence of a characteristic feature of
CV QKD: the knowledge of the covariance matrix (CM) of
the field quadratures is in general sufficient to assess the
security of a CV QKD protocol [12,21]. To prove this result
we consider the framework of measurement-device-
independent (MDI) QKD, first introduced to achieve
security against side-channel attacks on the measurement
devices [22,23]. Then, the result is extended to one-way
CV QKD protocols by exploiting the fact that the latter can
be simulated by a MDI protocol up to an arbitrarily small
error [24].
In previous works, other authors have discussed a way to

use the whole raw keys for both parameter estimation and
secret key extraction. This can be achieved if the users first
obtain a rough estimate of the error rate (or of the signal-to-
noise ratio) and then exploit it to perform error correction
before parameter estimation [10,25]. Our approach is
independent and conceptually different as we do not need
a rough estimate of the channel parameters and we do not
rely on doing error correction before parameter estimation.
Structure of a QKD protocol.—Up to a few conceptually

significant advancements, the structure of QKD protocols
has remained mostly constant since the first QKD protocol
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was proposed by Bennett and Brassard in 1984 (BB84)
[26]. A typical QKD protocol consists of seven basic
operations. (1) State preparation: Alice generates a
sequence of n symbols, and for each symbol she prepares
a suitable quantum code word. For example, in the original
BB84 protocol Alice encodes a bit value X ∈ f0; 1g in one
qubit using either the computational basis fj0i; j1ig or the
diagonal basis fjþi; j−ig. (2) Communication: The quan-
tum states are transmitted through an insecure quantum
communication channel. (3) Measurement: Bob measures
the quantum states coming out of the communication
channel. For example, in the BB84 protocol Bob obtains
a bit value Y ∈ f0; 1g by measuring in either the computa-
tional or the diagonal basis. (4) Sifting: For each signal
transmitted, Alice and Bob publicly announce whether they
have employed the computational or diagonal basis. Then
they only retain the data corresponding to matching choices
for preparation and measurement. The sifted data represent
the local raw keys of Alice and Bob. (5) Parameter
estimation: Alice and Bob publicly agree on a subset of
their local data to estimate the parameters of the channel.
For example, Bob sends to Alice a fraction f of his data, so
that she can estimate the probability of error. Obviously, all
the data sent through the public channel for parameter
estimation are compromised and cannot be used for secret
key extraction: the final rate will thus be reduced by a factor
1 − f. (6) Error correction: Alice sends to Bob error-
correcting information. Bob can combine this information
with his local data to reconstruct Alice’s raw keys up to a
small error (direct reconciliation). (7) Privacy amplifica-
tion: Alice and Bob apply a hash function to obtain a
shorter key which a potential eavesdropper has virtually no
information about.
During the three decades that separate us from BB84,

several main conceptual developments of QKD have been
introduced. One of the main advancements in QKD has
been the introduction of CV protocols [27,28], in which
information is encoded in continuous degrees of freedom of
the electromagnetic field, e.g., quadrature and phase [3,29].
In Ref. [30] it was shown that even semiclassical states as
coherent states can be employed for QKD. Up to 2002, it
was believed that QKD could not possibly work for channel
loss above 3 dB. This belief was proven wrong in Ref. [31].
Indeed, if it is Bob who sends error-correcting information
to Alice (reverse reconciliation [32]), then one can in
principle obtain secrecy in the presence of arbitrary high
loss [13,33–35]. In 2006 it was shown that switching
between two different bases for state preparation and
measurement is not necessary for CV QKD protocols
based on coherent state preparation and heterodyne detec-
tion [11]. Thus, with no-switching protocols one can avoid
sacrificing part of the data during the sifting phase.
Only very recently, MDI QKD has been introduced as a

framework to prevent side-channel attacks on the meas-
urement devices [36,37]. In fact, in MDI QKD the honest

users are only required to prepare quantum states, but not to
measure them, as the measurement is delegated to an
untrusted relay [22,23,38]. In this way one does not need
to make any assumption on the measurement device: a way
to guarantee security against side-channel attacks.
Description of the CV MDI QKD protocol.—CV MDI

QKD plays a central role to show that in CV QKD all the
raw data can be used for both parameter estimation and
secret key generation. Therefore, before proceeding, we
need to recall the details of the CV MDI QKD protocol put
forward in Ref. [24]. The security of this protocol was
proven in Ref. [24] in the asymptotic limit, and in Ref. [40]
in a finite-size, composable setting. The protocol, sche-
matically summarized in Fig. 1, develops in five steps:
(1) Coherent states preparation. Alice and Bob locally

prepare 2n coherent states, with complex amplitudes
denoted as α0 ¼ ðq0Aþ ip0

AÞ=2 and β0¼ðq0Bþip0
BÞ=2 [41].

The local variables X0 ≡ ðq0A; p0
AÞ and Y 0 ≡ ðq0B; p0

BÞ are
drawn i.i.d. from zero-mean, circular symmetric, Gaussian
distributions with variances VA and VB, respectively.
(2) Operations of the relay. The 2n coherent states are

sent to a central relay. For each pair of coherent states
received, the relay publicly announces a variable Z with
complex value γ ¼ ðqZ þ ipZÞ=2. If the relay is trust-
worthy, it operates a (lossy and noisy) CV Bell detection
[42–44].
(3) Parameter estimation. Alice and Bob estimate the

covariance matrix of the variables ðq0A; p0
A; q

0
B; p

0
B; qZ; pZÞ.

We remark that the property of extremality of Gaussian
states implies that the knowledge of the CM is sufficient to
assess the security of the protocol [12,21].
(4) Conditional displacements. Alice and Bob define the

displaced variables X ¼ ðqA; pAÞ and Y ¼ ðqB; pBÞ as
follows:

FIG. 1. The scheme of the CVMDI QKD protocol of Ref. [24].
Single lines represent bosonic modes, double lines classical
variables. Time flows from left to right. Alice and Bob initially
prepare coherent states by applying displacement operators DA,
DB to the vacuum state j0i, according to the value of their local
classical variables. The coherent states are collected by the relay
that, through some (in principle unknown) physical transforma-
tion, outputs a classical variable Z and gives to Eve quantum side
information. Finally, Alice and Bob apply classical displacement
dA, dB, conditioned on the value of Z, to their local classical
variables.
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qA ¼ q0A − gq0AðγÞ; pA ¼ p0
A − gp0

A
ðγÞ; ð1Þ

qB ¼ q0B − gq0BðγÞ; pB ¼ p0
B − gp0

B
ðγÞ; ð2Þ

where g⋆, for ⋆ ¼ q0A; p
0
A; q

0
B; p

0
B, is an affine function of γ.

The variables X, Y represent the local raw keys of Alice and
Bob, respectively.
(5) Classical postprocessing. To conclude the protocol,

the raw keys are postprocessed for error correction and
privacy amplification.
As a matter of fact, we have defined not just one

protocol, but a whole family of CV MDI QKD protocol:
one for each choice of the affine functions g⋆’s. In
particular, the CV MDI protocol of Ref. [24] is defined
for an optimal choice of the functions g⋆ (which for
completeness is derived below).
Parameter estimation with almost no public

communication.—The CV MDI QKD protocol described
above has two main characteristic features. The first is that
Alice and Bob do not apply any measurement: the only
measurement is performed by the relay, which is assumed
to be untrusted. This property defines the protocol as MDI,
as we are not making any assumption on the measurement
actually performed by the relay. The second feature
represents the main contribution of this Letter: the estima-
tion of the CM of ðq0A; p0

A; q
0
B; p

0
B; qZ; pZÞ can be done

locally by either Alice or Bob. Obviously, Alice and Bob
know, by definition of the protocol, the variances of q0A, p

0
A,

q0B, p
0
B. Also, Alice can locally estimate the correlation

terms hq0AqZi, hq0ApZi, hp0
AqZi, hp0

ApZi, from her local data
and from the amplitude γ ¼ ðqZ þ ipZÞ=2 that have
been publicly announced by the relay [45]. Similarly,
Bob can locally estimate hq0BqZi, hq0BpZi, hp0

BqZi, and
hp0

BpZi. This implies that all the entries of the CM of
ðq0A; p0

A; q
0
B; p

0
B; qZ; pZÞ can be locally estimated by either

Alice or Bob, without the need of public communication.
We remark that here we do not need to specify the

explicit procedure to obtain the confidence intervals for the
estimated parameters. This can be done in many different
ways. For example, under the additional assumption that
the variables ðq0A; p0

A; q
0
B; p

0
B; qZ; pZÞ are Gaussian, one can

proceed as described in Refs. [40,46,47]. Otherwise, one
can apply the statistical analysis of Ref. [10], which does
not assume Gaussianity. In either case, the required data for
the estimation of the correlation terms are all locally
available to the users.
Finally, the CM of ðqA; pA; qB; pBÞ can be computed

directly from the CM of ðq0A; p0
A; q

0
B; p

0
B; qZ; pZÞ by

exploiting the relations Eqs. (1) and (2). In conclusion,
the CM of ðqA; pA; qB; pBÞ can be estimated only exploit-
ing locally available information since, as we show in the
following section, the functions g⋆ can also be computed
from local data only. This is ultimately possible because in
a MDI QKD the correlations between Alice’s and Bob’s
raw keys are postselected by the relay. Therefore, the public

variable Z contains all the information about the correla-
tions between Alice and Bob and is thus sufficient, together
with the local data, to estimate the CM.
Optimal conditional displacements.—For completeness

we now derive the optimal choice for the displacement
functions g⋆ [48]. At the parameter estimation stage, Alice
andBob locally estimate theCMof ðq0A; p0

A; q
0
B; p

0
B; qZ; pZÞ:

VA0B0Z ¼

0
B@

VAI 0 cAZ
0 VBI cBZ
cTAZ cTBZ vZ

1
CA; ð3Þ

where I denotes the two-dimensional identity matrix,

vZ ¼
 

hq2Zi hqZpZi
hqZpZi hp2

Zi

!
ð4Þ

is the empirical CM of (qZ, pZ), and

cAZ ¼
� hq0AqZi hq0ApZi
hp0

AqZi hp0
ApZi

�
; cBZ ¼

� hq0BqZi hq0BpZi
hp0

BqZi hp0
BpZi

�

ð5Þ
are the correlation terms.
We remark that the variables ðq0A; p0

A; q
0
B; p

0
BÞ are uncor-

related with known variances VA, VB by definition of the
protocol, while all the entries involving the publicly known
variables ðqZ; pZÞ must be estimated from the data.
The optimal choice for the displacements in Eqs. (1) and

(2) is the one that minimizes the correlations between
Alice’s and Bob’s variables and γ ¼ ðqZ þ ipZÞ=2.
Therefore, we put, for ⋆ ¼ q0A; p

0
A; q

0
B; p

0
B,

g⋆ðγÞ ¼ u⋆qZ þ v⋆pZ; ð6Þ

and require that u⋆ and v⋆ are chosen in such a way that

hqZqAi ¼ hpZqAi ¼ hqZpAi ¼ hpZpAi ¼ 0; ð7Þ

hqZqBi ¼ hpZqBi ¼ hqZpBi ¼ hpZpBi ¼ 0; ð8Þ

which implies

h⋆qZi ¼ u⋆hq2Zi þ v⋆hqZpZi; ð9Þ

h⋆pZi ¼ u⋆hqZpZi þ v⋆hp2
Zi: ð10Þ

Solving for u⋆ and v⋆, we obtain

u⋆ ¼ h⋆qZihp2
Zi − h⋆pZihqZpZi

hp2
Zihq2Zi − hqZpZi2

; ð11Þ

v⋆ ¼ h⋆pZihq2Zi − h⋆qZihqZpZi
hq2Zihp2

Zi − hqZpZi2
: ð12Þ
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We remark that in this way the CM VAB of ðqA; pA; qB; pBÞ
equals the conditional CM of ðq0A; p0

A; q
0
B; p

0
BÞ conditioned

on ðqZ; pZÞ (see Ref. [24]).
As an example, put VA ¼ VB ¼ 2N and suppose that the

relay applies a Gaussian transformation that consists of (see
Ref. [24]) first attenuating the signals from Alice and Bob
by an attenuation factor η, and then performing an ideal,
noiseless, CV Bell detection. In this case, one obtains

−uq0A ¼ vp0
A
¼ uq0B ¼ vp0

B
¼ N

ηN þ 1=2

ffiffiffi
η

2

r
: ð13Þ

Other numerical examples are discussed in Ref. [40].
From MDI to one-way CV QKD.—In the MDI frame-

work, Alice and Bob send quantum states to a central relay,
which is untrusted and possibly operated by an eaves-
dropper. On the other hand, in a one-way QKD protocol,
Alice sends a quantum state ρ to the receiver Bob, who
measures it, typically by homodyne or heterodyne detec-
tion, as shown in Fig. 2(a).
First of all, a MDI protocol can simulate with arbitrary

high precision any one-way protocol. In fact, if the relay is
given to Bob, he can use it to teleport the signals from
Alice into his lab, as shown in Fig. 2(b). Clearly, ideal
CV teleportation requires Bob to employ as teleporta-
tion resource a two-mode squeezed vacuum (TMSV) state
ψTMSV with infinite squeezing [42–44]. Otherwise, for any
finitely squeezed TMSV state, the scheme in Fig. 2(b)
simulates that in Fig. 2(a) with up to additive Gaussian
noise [49–53]. Since the displacement operation commutes
with heterodyne detection, to apply a displacement D and
then measure by heterodyne detection [as in Fig. 2(b)] is

equivalent to first measure and then displace the (classical)
outcome of the measurement [as in Fig. 2(c)]. Finally, it is
well known that measuring by heterodyne detection one
mode of an entangled pair in a TMSV state conditionally
prepares the other mode in a coherent state [35]; this
implies the equivalence between the schemes in Figs. 2(c)
and 2(d). In conclusion, the MDI protocol in Fig. 2(d)
can simulate the one-way CV QKD. If the complex
amplitude β is sampled from a Gaussian distribution with
finite variance VB, then one simulates a noisy version of the
QKD protocol, whereas the noiseless case is obtained in the
limit that VB → ∞.
Discussion.—As shown above, parameter estimation in

CV MDI QKD can be performed with almost no public
communication because correlations are postselected by
the central relay. This condition is necessary but would not
be sufficient without the additional property that in CV
QKD the knowledge of the CM of the quadratures is
sufficient to asses the security of the protocol. In particular,
the conditional probability distribution PðXYjZÞ, which is
the relevant quantity for assessing the security of the protocol
[22], can be estimated from the elements of the CM alone. In
other words, the knowledge of the marginal probability
distributions PðXZÞ, PðYZÞ is sufficient to know PðXYZÞ.
This is the property that we have exploited above.
It is meaningful to ask whether one can perform

parameter estimation without public communication also
in the case of discrete-variable MDI QKD. The answer to
this question is negative because, although correlations are
still postselected by the relay, the knowledge of themarginals
is no longer sufficient to characterize the protocol. Consider,
for example, the qubit MDI protocol of Ref. [23], which can
be viewed as a MDI version of BB84, where the variables X
and Y assume values in f0; 1g, and Z ∈ f0; 1; 2; 3g is the
output of qubit Bell detection. One can easily check that in
this setting the marginal probability distributions PðXZÞ,
PðYZÞ do not uniquely determine PðXYZÞ.
Conclusions.—The list of conceptual breakthroughs in

the history of QKD includes the discoveries that reverse
reconciliation allowed us to beat the 3 dB barrier, that
coherent states were suitable for QKD despite being
semiclassical, and that CV QKD did not require switching
between different bases for encoding and measurement,
thus allowing us to skip the sifting phase.
This Letter presents one new conceptual development of

CV QKD, namely, that the whole raw keys can be used for
both parameter estimation and secret key extraction. This
finding removes the trade-off between secret key rate and
accuracy of the parameter estimation in the finite-size
regime of QKD. Unlike other works [10,25], here we do
not need an initial rough estimate of the signal-to-noise
ratio nor do we require performing error correction before
parameter estimation.
Such a property is first obtained for CV MDI QKD

protocols as a consequence of the fact that correlations

(a)

(c) (d)

(b)

FIG. 2. (a) Direct heterodyne detection, and (d) MDI-inspired
detection, obtained when the relay is given to the receiver Bob.
Single lines indicate bosonic modes, double line classical
variables. Panels (b) and (c) show intermediate configurations
that we exploit to prove the equivalence, up to an arbitrarily small
error, between (a) and (d). Notice that in (d) we have described
the preparation of a coherent state jβi of amplitude β as the
application of a displacement D0 on the vacuum, where the
amplitude of the displacement is determined by a classical
variable β.
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between Alice and Bob are encoded in the variable that is
publicly announced by the relay—even though such a
variable does not contain information about the secret key.
Since CV MDI QKD can simulate one-way CV QKD
protocols with arbitrary precision, it then follows that the
whole raw key can be used for both parameter estimation
and secret key generation for this class of CV protocols
as well.
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