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Future quantum devices often rely on favorable scaling with respect to the number of system
components. To achieve desirable scaling, it is therefore crucial to implement unitary transformations
in a time that scales at most polynomial in the number of qubits. We develop an upper bound for the
minimum time required to implement a unitary transformation on a generic qubit network in which each of
the qubits is subject to local time dependent controls. Based on the developed upper bound, the set of gates
is characterized that can be implemented polynomially in time. Furthermore, we show how qubit systems
can be concatenated through controllable two body interactions, making it possible to implement the gate
set efficiently on the combined system. Finally, a system is identified for which the gate set can be
implemented with fewer controls.
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Achieving accurate control and scalability lie at the heart
of every functioning quantum information processing
device. Thus, a vital goal is to design algorithms that
can be implemented efficiently. In particular, in the gate
model of quantum information processing an efficient
algorithm should scale polynomially in the number of
gates used to carry out the computation. Through a
universal gate set every algorithm described by a unitary
transformation can be implemented up to some degree of
accuracy. However, a simple counting argument shows that
most of the unitary transformations cannot be implemented
efficiently [1]. Quantum control theory allows for imple-
menting the final unitary transformation directly through
optimized classical control fields [2–4]. This has the
advantage that, if the procedure can be done efficiently,
there is no need for constructing gate sequences. Instead,
optimization algorithms such as a gradient based search
[5,6], learning control [7,8], or genetic algorithms [9,10],
may be used to precalculate or learn the classical control
fields that implement the desired unitary transformation.
In fact, it has been shown that the complexity of both
approaches, i.e., calculating control pulses and designing
gate sequences is the same [11,12].
Similar to a universal gate set, for a fully controllable

system every unitary transformation contained in the
special unitary group SUð2nÞ is reachable through switch-
able controls. In order to implement a goal unitary gate Ug

efficiently, it is crucial that the length of the control pulses,
henceforth referred to as the minimum gate time T, scales at
most polynomially in the number of qubits. Unfortunately,
the determination of the minimum gate time has remained a
major technical challenge to overcome for moving the field
towards practical applications. In this Letter we make a step
towards solving this problem by developing an upper
bound for the minimum gate time under the assumption

that sufficient control resources are available. As illustrated
in Fig. 1, this allows for determining the set of gates that
provably can be implemented efficiently.
Although substantial progress has recently been made by

characterizing graphs that can be controlled efficiently [13],
the characterization of the set of gates that can be reached in
polynomial time and the corresponding number of controls
required is still unknown. Moreover, it remains challenging
to identify physical models that obey the criteria developed
in Ref. [13].
The main quantitative result of this Letter is the develop-

ment of the upper bound
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for the minimum gate time to implement a goal unitary
transformationUgðaÞ up to some error ϵ for a generic n-qubit

(a) n-qubit network (b) Reachable set

FIG. 1. Illustration of one of the main results: (a) for a generic
qubit network (3) in which each qubit is subject to two local
controls (4) (gray arrows), (b) the set of gates Rpoly (white area)
that (provably) can be implemented in a time that scales at most
polynomially in the number of qubits is characterized [see
Eq. (2)]. The dark gray area represents the set of gates that
can be reached with time optimal methods in polynomial time.
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graph (3) in which each of the qubits is subject to two local
controls (4). As illustrated in Fig. 1(a), the qubits (black
circles) interact via two body interactions (solid lines) where
J is the smallest coupling constant present in the graph.
The generator of the goal unitary transformation is charac-
terized by lðaÞ real parameters summarized in the vector a
with kak∞ being the vector infinity norm, i.e., the largest
parameter.
One way to obtain an upper bound on T is to find a

specific way to implement a generic unitary transformation
and upper bound the corresponding time. The procedure
used here can be summarized by the following steps, with
details found below and in the Supplemental Material [14]:
(1) Because of the assumption that each qubit is subject to
two unconstrained orthogonal controls, a decoupling
sequence allows us to select arbitrary two body interactions
instantaneously [see Eq. (5)]. (2) A sequence formed by
such two qubit unitaries [see Eq. (6)] allows for creating
unitary operations which are generated by k-body inter-
action terms in a time that scales linearly in k [see Eq. (7)].
(3) Finally, unitary transformations that are generated by
linear combinations of l, k-body interaction terms can
be created (up to an error ϵ) using a Trotter sequence
[see Eq. (8)].
As illustrated in Fig. 1(b), the bound (1) allows us to

conclude that the gate set,

Rpoly¼fUðaÞ∈SUð2nÞjlðaÞ;kak∞ ≤O(polyðnÞ)g; ð2Þ

can be implemented on a qubit graph in which each qubit is
subject to two local controls in a time that scales at most
polynomially in the number of qubits n, and, moreover,
enables for characterizing the Hamiltonians that can be
simulated efficiently. We, furthermore, show that for a
specific system the gate set Rpoly can be implemented with
less controls. Moreover, a strategy is presented for effi-
ciently scaling the system by controlling two body inter-
actions (schematically represented in Fig. 2). We remark
that our findings are a proof of feasibility rather than a
strategy to implement gates in a time optimal manner,
which remains a practical challenge.
A quantum control problem can be expressed as follows.

The system of interest is described by a time dependent
Hamiltonian of the form HðtÞ ¼ H0 þHcðtÞ, where H0 is
referred to as the drift Hamiltonian and the controls enter in
HcðtÞ via time dependent functions. The aim of quantum
control is then to steer the system towards a desired target
by shaping the control functions. Here we are interested in
implementing a generic target unitary transformationUg on
an n qubit system. The first question to consider is whether
every Ug can be reached, i.e., whether the system is fully
controllable. When control enters in a bilinear way inHcðtÞ
[17], known as the Lie rank criterion [2], the system is fully
controllable if and only if the controls and drift generate the
full algebra (see, e.g., Refs. [18–24] and references therein

for examples). More formally, if the system is fully
controllable there exist controls that allow implementing
every Ug ¼ expðΘÞ with Θ ∈ suð2nÞ up to arbitrarily high
precision in finite time. Throughout this work the special
unitary algebra suð2nÞ is expressed in terms of the Pauli
operator basis fBig22n−1i¼1 , in which each Bi corresponds to a
string of Pauli operators. Every Θ ∈ suð2nÞ can be written

as ΘðaÞ ¼ PlðaÞ
i¼1 aiBi, where the real coefficients are

summarized in the vector a and we denote by lðaÞ ≤
22n − 1 the number of its nonzero elements. Except for low
dimensional systems [25–30], the minimum gate time TðaÞ
needed to implement UgðaÞ up to some accuracy is not
known.
Consider a connected graph GðV; EÞ where the vertices

V and edges E represent qubits and two body interactions,
respectively. The most general form of such an n-qubit
graph is described by the drift Hamiltonian

H0 ¼
X

α∈fx;y;zg
i∈V;

ωðiÞ
α σðiÞα þ

X
α;β∈fx;y;zg

ði;jÞ∈E;
gði;jÞα;β σðiÞα σðjÞβ ; ð3Þ

where ωðiÞ
α , gði;jÞα;β are energy splittings and coupling con-

stants, respectively. Here the notation refers to σðjÞα ≡ 1 ⊗
σα ⊗ 1 where σα with α ∈ fx; y; zg are Pauli spin oper-

ators. That is, σðiÞα acts only nontrivially on the ith qubit. We
assume that each qubit is subject to two local controls

fσðiÞx ; σðiÞy g such that

HcðtÞ ¼
X
i∈V

½fiðtÞσðiÞx þ hiðtÞσðiÞy �; ð4Þ

where fiðtÞ, hiðtÞ are the corresponding control fields that
are assumed to be unconstrained. This is a typical
assumption in the context of quantum control theory and
dynamical decoupling and its crucial for the development
of the upper bound below (see the note [31]). Before
relaxing the assumption of two orthogonal controls on each
qubit, we first describe in more detail how the upper bound
on TðaÞ can be derived for this control system. Further
details of the derivation can be found in Ref. [14].
The analysis starts with the form of HcðtÞ, allowing for

having two orthogonal controls on each qubit, such that
every single qubit gate can be implemented instantaneously
[26,27]; moreover, the system is fully controllable [23].
Using a decoupling sequence [32,33] formed by the
controls permits instantaneously selecting arbitrary two
body interaction terms [34]. Thus, we can implement every
unitary transformation

Uði;jÞ
α;β ðkÞ ¼ e�ikσðiÞα σðjÞβ ; k ∈ Rþ; α; β ∈ fx; y; zg;

ð5Þ
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in a time t ¼ k=gði;jÞα;β [14], noting that each Pauli operator
can be rotated instantaneously to a generic Pauli operator
using local operations. The following analysis makes use of
the fact that every basis operator Bi can be created by a
nested commutator of the form ½� � � ; ½S1; ½S2; S3���, where
Sk ∈ S ¼ fiσðiÞα σðjÞβ g, which are referred to as a generating
set and we refer to the length of the nested commutator as
the depth D with ½S1; S2� being a commutator of D ¼ 1.
Using a sequence of the form

Uð2;3Þ†
x;z ðπ=4ÞUð1;2Þ

z;y ðkÞUð2;3Þ
x;z ðπ=4Þ ¼ expðikσð1Þz σð2Þz σð3Þz Þ;

ð6Þ

and introducing the smallest coupling constant J ¼
mini;j;α;βfgði;jÞα;β g present in H0, an upper bound for the
time Δt to create a unitary operation generated by a
commutator of depth 1, in Eq. (6) a 3-body interaction
term, can be found, i.e., Δt ≤ ðπ=2JÞ [14].
There are other sequences that allow for increasing or

decreasing the length of a Pauli string [35]. However, due to
the form of the construction (6), a unitary operation
generated by a nested commutator of depth D will then
take at most timeDΔt. Thus, the time τðaiBiÞ to implement
a unitary operation Ug ¼ expðaiBiÞ is upper bounded by

τðaiBiÞ ≤
1

J

�
DðBiÞ

π

2
þ jaij

�
; ð7Þ

which is compared with known results in the online
material [14]. Through a Trotter-Suzuki sequence [36]
we can further upper bound the time it takes to generate
a unitary operator generated by linear combinations of the
basis operators up to an error ϵ. We find

TðaÞ ≤ 1

J

�
kak1 þ

πKðaÞPlðaÞ
i¼1 DðBiÞ

4
ffiffiffi
2

p
ϵ

�
; ð8Þ

with k · k1 being the vector-1 norm, KðaÞ ¼ ð1= ffiffiffiffiffi
2n

p ÞP
j>kjajakjk½Bj; Bk�k, and k · k is the Hilbert-Schmidt

norm. The scaling in ϵ, explicitly given in Ref. [14], can
be traced back to the use of the Suzuki-Trotter series, and
the scaling can be improved using more sophisticated
sequences [37]. An algorithm finding the “shortest” path,
possibly weighted by the coupling constants, to create a Bi
would produce the tightest bound. However, it takes a
nested commutator of depth (n − 2) to create a basis

operator that contains n Pauli operators σð1Þα σð2Þβ � � � σðnÞδ .
From this operator it takes another (n − 2) commutators to
create any Bi. For an illustration we refer to the Lie tree
diagram in Ref. [14]. Thus, the depth is upper bounded by
DðBiÞ ≤ 2ðn − 2Þ, yielding the bound (1). Provided that
kak∞ scales at most polynomially in the number of qubits,

we then have as a sufficient criterion for efficiently
implementing a goal unitary Ug the following result. For
the control system (3) and (4), a unitary gate UgðaÞ that is
parametrized through lðaÞ parameters can be implemented
in a time that is at most polynomial in the number of qubits
n if lðaÞ ≤ O(polyðnÞ). Thus, for the control system in
Eqs. (3) and (4) the set of gates Rpoly given by Eq. (2) can
be reached in a time that scales at most polynomially in the
number of qubits. In particular for kak∞ ¼ Oð1Þ and
lðaÞ ¼ OðnÞ every Ug can be implemented in a time at
most of the order Oðn4Þ. However, in general for lðaÞ ¼
22n − 1 the upper bound scales exponentially TðaÞ ≤
Oðn26nÞ. The bound (8) can be directly applied to
efficiently simulating the dynamics with Hamiltonians
[38–40]. For the control system expressed in Eqs. (3)
and (4) every Hamiltonian H ¼ −iΘðaÞ consisting of
lðaÞ ≤ O(polyðnÞ) k-body interaction terms can be simu-
lated efficiently. Since the strategy to obtain (8) is not
necessarily time optimal, the actual set of gates that can be
reached in polynomial time may be larger. It would be
interesting to see how much the set can be increased using
time optimal control methods [41]. However, the set Rpoly

can certainly be increased by considering the full expression
in Eq. (8). Moreover, one can easily determine themaximum
time needed to implement UgðaÞ ¼ exp (ΘðaÞ) by expand-
ing Θ in the Pauli operator basis and calculating (8).
For lðaÞ ¼ 1 the target unitary operation is given by

Ug ¼ expðaiBiÞ and it follows from Eq. (7) that the time
to implement such an operation is upper bounded by
τðaiBiÞ ≤ ð1=JÞ½πðn − 2Þ þ jaij�. For instance, every two
qubit gate corresponding to a basis operator with two Pauli
operators can be implemented in a time that scales at most
linearly in the number of qubits. Moreover, gates corre-
sponding to basis operators with n Pauli operators, i.e., n

body interaction terms of the form σð1Þα σð2Þβ � � � σðnÞδ , can be
implemented in linear time as well. The bound can be
tightened by introducing the geodesic path distance dði; jÞ
between two qubits i and j as the smallest number of edges
in a path connecting the two considered qubits. For example,
it follows that the time to create a CNOT gate between qubit
i and j is upper bounded TCNOT ≤ π(f½dði; jÞ − 1�=Jg þ
1=4J). Since every two qubit gate can be implemented with
at most three CNOT gates [42], up to local unitary rotations,
we have T2qubit ≤ 3π(f½dði; jÞ − 1�=Jg þ 1=4J). This
bound is tighter than the bound that would be obtained by
simply implementing a CNOT gate on two nearest neighbor
qubits followed by SWAP operations [26,27]. The upper
bound for T2qubit describes how much time is maximally
needed in order to implement a generic two qubit gate on a
qubit graph (3), provided each qubit can be instantaneously
controlled locally. Therefore, the bound for T2qubit character-
izes the time scale for entangling twoqubits in a generic qubit
network.
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The characterization of the set of gates that can be
reached in polynomial time (2) relied on the assumption
that each qubit is subject to two orthogonal controls. A
natural question is whether the number of controls can be
reduced while still being able to implement Rpoly in a time
that scales at most polynomially in the number of qubits.
Before presenting an n-qubit graph for which this is the
case with only nþ 1 controls, we address the question
regarding how qubit systems can be concatenated in order
to implement Rpoly on the total system.
Concatenating systems.—Suppose we have two n-qubit

graphs G1ðV1; E1Þ and G2ðV2; E2Þ for which the time to
implement a generic two qubit unitary on each of the
graphs is upper bounded by Tc. Now, as represented in
Fig. 2, connect the two graphs with a single controllable

two-body interaction, say σðiÞz σðjÞz with i ∈ V1 and j ∈ V2.

Importantly, fiσðiÞα σði
0Þ

β ; iσðjÞγ σðj
0Þ

δ ; iσðiÞz σðjÞz g with i; i0 ∈ V1

and j; j0 ∈ V2 forms a generating set S.
Thus, every basis operator Bi ∈ suð22nÞ for the total

system can be created through a nested commutator formed
by the elements of S. The time to create a unitary Ug ¼
expðaiSiÞ with Si ∈ S is upper bounded by Tc. Therefore, it
takes Δt ≤ 2Tc to produce a nested commutator of depth 1
and the depth for a generic basis operator DðBiÞ is upper
bounded by 2ð2n − 1Þ. Consequently, the time to implement
a unitary transformationUg ¼ expðaiBiÞ on the total system
is upper bounded by τðaiBiÞ ≤ Tc½4ð2n − 1Þ þ 1�. As in the
previous paragraph, a Trotter sequence yields a generic
UgðaÞ ∈ SUð22nÞ up to an error ϵ so that for the combined
system an upper bound on TðaÞ is obtained, where the
explicit form is given in Ref. [14]. For kak2∞ ¼ Oð1Þ and
lðaÞ ¼ OðnÞ, we conclude that TðaÞ ≤ OðTcð2nÞ5Þ. It
immediately follows that upon combining L qubit graphs,
each consisting of n qubits, through L − 1 controllable two
body interactions, then the time TðaÞ to implementUgðaÞ ∈
SUð2LnÞ scales at most asO(TcðLnÞ5). Thus, as a sufficient
criterion for a qubit system being scalable we have the
following result.

Using L − 1 controllable two body interactions every
UgðaÞ ∈ SUð2LnÞ can be implemented on a Ln-qubit
network in a time which scales at most polynomially in
L if kak∞, lðaÞ ≤ O(polyðLnÞ).
Concatenating blocks of qubits through controllable two

body interactions allows for scaling the total system so that
the gate set Rpoly can be implemented efficiently on the
combined system. This situation emphasizes the impor-
tance of being able to control two body interactions.
However, an allied question is whether a qubit graph exists
for which a few local controls are sufficient to implement
Rpoly efficiently. To address this goal requires identifying a
system and a number of controls that allow for implement-
ing each two qubit unitary (5) in a time that scales at most
polynomially in the number of qubits. Based on a decou-
pling scheme, for an n-qubit system in the previous
paragraph, this goal is always possible using 2n controls.
Now we show that for a star shaped graph the number of
controls can be reduced to nþ 1.
Reducing the number of controls.—Consider a star

shaped graph described by the drift Hamiltonian H0 ¼
J
PNþ1

i¼2 ðσð1Þx σðiÞx þ σð1Þy σðiÞy Þ þ J
PNþ1

i¼2 σðiÞy , where for the
sake of simplicity the couplings and the energy splittings
are assumed to be all given by J. Control is exerted through

fσð1Þx ; σð1Þy ; σðiÞz g, i ¼ 2;…; N þ 1. For an illustration of
such a graph we refer to the online material [14].

Through decoupling using a string of σðiÞz we can instanta-
neously implement unitaries corresponding two body

interaction terms Hk¼ðσð1Þx σðkÞx þσð1Þy σðkÞy þσðkÞy Þ. Further

decoupling with σð1Þx , σðkÞz and instantaneous local rotations
of qubit 1 and qubit k yield unitaries corresponding to

σð1Þα σðkÞx , σð1Þβ σðkÞy and σðkÞy . Recall that Δt ¼ ðπ=2JÞ units of
time are needed to create a unitary operation generated by

½σð1Þα σðkÞx ; σðkÞy �. Further note that a unitary operation Ug ¼
expðaiSiÞ with Si ∈ fiσð1Þα σðkÞβ g takes at most Tc ¼ ð1=JÞ
½ðπ=2Þ þ jaij� time, where fiσð1Þα σðkÞβ g forms a generating
set. In order to obtain a unitary operation corresponding to
a commutator ½S1; S2� requires Δt ≤ ð3π=JÞ units time.
Thus, the time τðaiBiÞ to create Ug ¼ expðaiBiÞ with Bi ∈
suð2Nþ1Þ is upper bounded by τðaiBiÞ ≤ DðBiÞð3π=JÞ þ
ð1=JÞ½ðπ=2Þ þ jaij�. By upper bounding the depth we then
find τðaiBiÞ ≤ ð1=JÞ½ðπ=2Þð12ðn − 2Þ þ 1Þ þ jaij�, where
n ¼ N þ 1 is the total number of qubits. Therefore, every
Ug ¼ expðaiBiÞ can be implemented in a time that scales at
most linearly in the number of qubits. Again using a Trotter
sequence finally permits concluding that for the star shaped
graph every U ∈ Rpoly can be implemented efficiently up
to some error ϵ using only nþ 1 controls. The star shaped
graph model is of particular importance since it is used to
describe the interaction of an electron spin in a nitrogen
vacancy center with the surrounding nuclear spins [43–46],
and, in general, quantum dots in a spin bath [47–49].

  -qubit graph

FIG. 2. Illustration of how L qubit graphs, each consisting of n
qubits, can efficiently be concatenated through controllable two
body interactions (dotted lines). Assuming that on each qubit
graph any two qubit gate can be implemented in a time smaller
than Tc, for kak2∞ ¼ Oð1Þ and lðaÞ ¼ OðnÞ, we then have for the
total system TðaÞ ≤ O(TcðLnÞ5).
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Conclusions.—We have characterized the set of gates that
(provably) can be implemented in polynomial time on a
generic qubit network where each qubit is controlled locally
using time dependent fields. The characterization relied on
the assumption that the control fields are unconstrained in
strength. Further investigations regarding the importance of
this assumption, as well as an assessment of the tightness of
the derived bound can be found in the SupplementalMaterial
[14]. The control of two body interactions allows for
concatenating blocks of qubits so that the total system can
be controlled efficiently, thereby paving the way towards
scalable quantum devices. Moreover, we have identified a
model, for which the efficiently implementable gate set can
be realized with fewer local controls. An interesting goal
would be the determination of the minimum number of
controls required to implementRpoly and the corresponding
graph topologies.
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