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Efficient Classical Algorithm for Boson Sampling with Partially Distinguishable Photons
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We demonstrate how boson sampling with photons of partial distinguishability can be expressed in terms
of interference of fewer photons. We use this observation to propose a classical algorithm to simulate the
output of a boson sampler fed with photons of partial distinguishability. We find conditions for which
this algorithm is efficient, which gives a lower limit on the required indistinguishability to demonstrate
a quantum advantage. Under these conditions, adding more photons only polynomially increases the
computational cost to simulate a boson sampling experiment.
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Boson sampling [1] provides a promising route towards
demonstrating a quantum advantage, i.e., a computation by
a quantum system that exceeds what is possible with a
classical one. In boson sampling, the task is to provide a
sample from the output of a linear transformation of optical
modes, some of which are fed with single photons. For a
sufficient number of photons and modes, a suitable
quantum machine directly implementing this problem will
outperform a realistic classical computer simulating the
experiment. This result has spurred a range of experimental
efforts [2-8].

A crucial challenge for computational problems based on
boson sampling is to accommodate imperfections that arise
in real-world devices. An essential aspect of the original
proposal [1] was to show that for small deviations from the
ideal machine, the achieved sampling problem retains
computational hardness. However, when this bound is
translated into concrete values for photon distinguishability
[9] or beam-splitter deviations [10], it turns out that this
results in scaling which is extremely unfavorable compared
to what is achievable experimentally. There is therefore a
need to devise photon sampling problems with improved
error tolerance.

There exist two approaches to demarcating the line
between viable and nonviable extensions of boson sam-
pling. In the top-down approach, the original complexity
proof is extended “downwards,” showing that the resulting
output distribution for systems of increasing imperfection
is still hard to sample from. This approach has had some
success: for example, it has been shown that the issue of
unreliable single photon generation can be overcome, and
that the hardness of the resulting “scattershot” boson
sampling problem is equivalent to that of the original
boson sampling problem [11,12].

The alternate bottom-up approach is to construct new
efficient classical algorithms for boson samplers with
particular imperfections. This approach leads to construc-
tive proofs that rule out a computational advantage, thereby
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showing performance limits that must be exceeded by
quantum machines. For example, Rahimi-Keshari et al.
[13] used generalizations of the Wigner function as a way
to construct a classical algorithm which can efficiently
simulate certain lossy boson samplers.

In this work, we consider which-way information of the
interfering photons as an imperfection that compromises
the hardness of a boson sampler. We show a classical
algorithm that efficiently approximates detection probabil-
ities in the limit of many photons, given the photons have
some partial distinguishability. We then use this algorithm
to consider problems of finite size and estimate a level of
indistinguishability that must be surpassed to demonstrate a
quantum advantage. The basis of our algorithm, schemati-
cally depicted in Fig. 1, is that for partially distinguishable
photons, the probability of a given outcome can be
approximated by terms that involve fewer interfering
photons, where the remaining ones do not interfere at
all. For a given error tolerance and indistinguishability, we
determine a number of photons above which this approach
succeeds, while requiring only a polynomial increase in the
computational steps as the number of photons increases
further. We use this result to estimate a lower bound on the
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FIG. 1. A pictorial representation of our result. We show that
boson sampling with n photons of partial distinguishability
(represented by the mixed red-green balls) can be approximated
as computing the outcome of a series of smaller permanents of
size k, combined with probabilistic transmission of the remaining
n — k photons. The value of k at which this approximation works
is set by the value of the distinguishability.
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photon quality required to demonstrate a quantum advan-
tage: for 50 photons and an error threshold of 10%, the
degree of indistinguishability of the interfering photons
must be higher than 94.7%.

Multiphoton interference at partial distinguishability has
been studied extensively [9,14-25]. For boson sampling
with fully indistinguishable photons in separate modes, the
probability of a particular detection outcome is given by
P = |Perm(M)|?, where M is a submatrix of the unitary U,
where the rows and columns of M are chosen to correspond
to the occupied input and output modes, respectively.
In this work, we will use the formalism of Tichy [16],
where the probability of a particular detection outcome
(i.e., photons emerging at particular outputs) is

P=3 (H Sa,j>Perm(M M), (1)

ceX \j=1

where M is a submatrix constructed in the same way as for
fully indistinguishable boson sampling, n the number of
photons, and where * denotes the elementwise product, and
M* is the elementwise complex conjugation. Throughout
this work, we will assume that M is selected from a Haar-
random unitary U of size N, with N > n?, so that the
elements of M are independent and identically distributed
(i.i.d.) complex Gaussians [1]. The notation M, , indicates
that the rows of M are unpermuted, and that the columns
are permuted according to o, and we will use this notational
convention throughout. The matrix of mutual distinguish-
abilities S is given by S;; = (¥;|¥;), where ¥, is the ith
single-photon wave function. The set of permutations of
size n is denoted X.

There are two extreme cases to note. First, if Sij =1,
Eq. (1) reduces to the standard expression for boson
sampling with fully indistinguishable particles. For
S;; =65, Eq. (1) reduces to P = Perm(|M|*), which is
the expression for boson sampling with distinguishable
photons in separate modes. In this latter case, multiphoton
interference is absent and the total probability is expressed
in terms of single-photon transmission probabilities instead
of transmission amplitudes. Since this matrix contains only
positive elements, it can be evaluated to within a multi-
plicative error in polynomial time [26]. In our work, we will
interpolate between these cases, and parametrize the mutual
distinguishabilities by a single real parameter x, with

Sij(x) = x + (1 = x)5;;. (2)

We will argue at the end of our work and in the
Supplemental Material [27] that our results apply to more
general forms of S, and that x can be taken to be real
without loss of generality.

The observation that underlies our work is that the
degree of quantum interference in each term in Eq. (1)
is determined by the number of fixed points (invariant

elements) in the corresponding permutation. Each fixed
point in ¢ causes the corresponding row from M to enter
into the permanent as the modulus squared, meaning that
in that term, the corresponding photon does not exhibit
interference. Therefore, the size of the matrix of complex
elements which must be computed to evaluate each term is
set by the number of noninvariant elements in the permu-
tation [16,17]. Furthermore, terms with many fixed points
have a larger weight in the sum: for each element in the
permutation which is not a fixed point, the product in
Eq. (1) will pick up a factor x < 1 from the off-diagonal
elements of S [9,15]. One can therefore construct a series of
successively more accurate approximations by grouping
the terms in Eq. (1) by number of fixed points, and then
truncating the sum at some value, which we designate k.
The resulting approximation P, is given by

k
Py=> "> xPerm(M x M; ), (3)
J=0 &/

where we have introduced the notation ¢/ to denote those
permutations which have n — j elements as fixed points. To
simplify Eq. (3), we note that in this permanent, n — j
columns will be left unpermuted, and will therefore end up
as the modulus squared of the elements. Expanding Eq. (3)
in all the permuted columns and combining terms, we can
separate the permanents of permuted and unpermuted
columns as

k
P, = ZO Z xJZPerm(MpJp * M, )Perm(|M;, %),
J=0 o/ P

(4)

where p denotes the (;’) possible combinations of j rows
from the matrix M, 1, is the identity permutation of the
elements of p, p denotes the complementary rows, and o,
and o, denote the permuted and unpermuted elements of o,
respectively.

We note that the lower the value of j, the easier the terms
are to compute, since the second of these two permanents
can be efficiently evaluated, and the first permanent is of a
matrix of size j. The term with j = O represents the case
where the photons are treated as fully distinguishable
particles. The next term (j = 2) represents the first-order
correction, where interference between each pair of pho-
tons is considered, and similarly for higher values of j. The
sequence of Py, is therefore ordered by computational cost
as well as by degree of quantum interference.

The rest of this Letter is dedicated to investigating the
properties of these successive approximations. We start by
investigating these approximations numerically, which will
lead to some conjectures regarding the scaling behavior of
these approximations with n and k, which we will then
confirm through more rigorous analysis.
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FIG. 2. Top: relative error AP;/P(x =0), where P is the
probability of observing some outcome of the boson sampler, as a
function of indistinguishability, for different values of k. Bottom:
scaling of the relative error with overall photon number for
x = 0.25,0.5,0.75, and 0.95 (from bottom to top), at fixed k = 2.

In Fig. 2(a), we numerically investigate the quality of this
approximation for a five-photon boson sampling experi-
ment. We simulate 10* Haar-random unitary matrices of
size N = 100, from which we take the first # = 5 modes as
input and output without loss of generality, and computed
P, for values of k from 1 to 4. Note that the case kK = 1 only
encompasses the identity permutation (j = 0), which cor-
responds to sampling with distinguishable photons. We plot
the relative error of our approximation, defined as AP,/ Py,
where AP = |P;, — P| and Py = n!/N" is the characteristic
scaling in the number of photons.

Figure 2(b) shows how the relative error scales with the
photon number n. We plot AP,/P, as a function of the
photon number n. We find that the relative error saturates at
moderate values of n. This numerical result suggests that in
the limit of large photon numbers, the accuracy of our
approximation does not depend on the number of photons;
i.e., AP, /P, is a function of k and x, but not of n if n is
sufficiently large. This means that for large enough #, if our
approximation P satisfies a given error threshold for a
particular value of k, that approximation will also work for
larger photon numbers. Since the size of the complex-
valued permanents is given by k, this suggests that adding
more photons does not significantly add to the cost of
simulating the problem.

We now proceed to prove that this is indeed the case. To
do this, we show two things. First, we need to show that our
approximation is efficient, in the sense that adding more
photons only induces a polynomial increase in the number
of computations required. Second, we need to show that the
intuition we obtained from the numerics above is correct,

and that the relative error on our approximation does not
increase when n is increased.

We begin with the first task: counting the number of
terms in Eq. (4). The number of terms in the middle of the
three sums of Eq. (4) is given by the rencontres number
[28,29] R, —; = (;’)'(]), where !(j) = |j!/e] is the sub-
factorial. R, ,_; is defined as counting the number of
permutations which leave n — j elements invariant; it scales
as n/. The inner sum is over p, which as noted above scales
as (;’), which is a quantity which also grows polynomially
in n. The total number of complex-valued permanents
which we are required to compute for particular value of j
in the outer sum is therefore (7)2 !(j). The problem therefore

scales as n%/, and when we truncate the terms at k, the
number of terms is therefore of the order of n**. Using
Ryser’s algorithm [30] to evaluate each complex-valued
permanent takes 2k steps, and the whole algorithm scales
as n**2%k, which scales polynomially in n as required,
provided the choice of k needed to satisfy some error bound
does not depend on n.

Therefore, we now consider the accuracy of the scheme.
We write P as a polynomial in x: P(x) = 3" ¢;x/, where the
coefficients are given by Eq. (4). We can therefore esti-
mate the error AP,/P, by computing the error term
D x/. We find that if M is a matrix of independent
Gaussian elements, the increase in the number of terms
with j is precisely balanced out by the decrease in the
magnitude of each term (see Supplemental Material [27]),
and that these coefficients are given by

;| ~ <§:(1/k!)>Rn,n_j('f)j!(n—j)!/zN"zn!/zN",
J

k=0

where in the final step we have taken the limit of large n It
should be noted that this latter expression does not depend
on j, and differs by a factor 1/2 from the expectation value
of fully distinguishable boson sampling. As an illustration,
Fig. 3 shows estimates of the absolute values of the
coefficients |c|;, for n = 8. These are compared against
a numerical simulation on 500 submatrices of Haar-random
matrices. The precise behavior of this function is discussed
in the Supplemental Material [27]. Already for n = 8, some
points reach the value obtained in the limit of large n.
We can now perform the required error estimate.
Noting that the c; are uncorrelated (see Supplemental
Material [27]), we add the terms as a sum of squares:

APk/POI

this has the finite value

St (lejlx/)?. If we take the limit n — oo,

APk/PO = Xk+1/2(1 —xz)l/z. (5)

Our algorithm for simulating boson sampling with
partially distinguishable photons is now as follows: given
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FIG. 3. Coefficients of the polynomial P = 27:0 cjxf, for
n = 8, normalized to c¢,. The black squares correspond to a
numerical simulation of 500 random unitaries. The red circles
correspond to the prediction from Eq. (5).

the desired accuracy of the simulation and the level of
indistinguishability with which the experiment is per-
formed, use Eq. (5) to evaluate the required value of k.
Next, compute Eq. (3) up to the kth term, and feed the
computed value of P, into a classical sampling algorithm,
such as the Metropolis algorithm [31]. Such algorithms can
generate a sample from a probability distribution, even if
the number of possible outcomes is large [32], which
means that the number of modes does not enter into the
hardness of boson sampling in general [33].

Finally, we determine the regions of the parameter space
where our algorithm is efficient. The solid lines in Fig. 4
show the values of k and x for which Eq. (5) has solutions.
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FIG. 4. Lower bound on the quality of photons required to
achieve exponential scaling of computational hardness in boson
sampling. The solid lines indicate solutions of Eq. (5), which
demarcate the region of polynomial scaling in n. The dashed lines
indicate the value of x below which n-photon interference can be
expressed as interference of n — 1 photons. The dash-dotted lines
indicate the values of indistinguishability where n-photon inter-
ference can be described using fewer resources than required for
the computation of an n-by-n complex permanent.

These lines define a bound which must be exceeded for the
complexity of the problem not to scale polynomially with
the total number of photons. This bound holds for all n > k.
State-of-the-art supercomputers can compute permanents
of size 50 in approximately an hour [34], which might
therefore be taken as an estimate of the number of photons
required to obtain a quantum advantage. Using Eq. (5), we
find that we require x = 0.870, x = 0.908, and x = 0.947
for P, to be accurate to within AP/Py = 0.1%, 1%, or
10%, respectively. Note that as the error tolerance
increases, the degree of distinguishability that our algo-
rithm can handle increases as well. We stress again that this
result is a lower bound: achieving it experimentally is no
guarantee that the experiment is not classically simulable
through a more advanced algorithm.

If we relax the requirement that our algorithm must work
for all n, we obtain a tighter requirement on the distinguish-
ability. The dashed lines in Fig. 4 show a tighter bound,
which holds only for k = n — 1. This line demarcates where
n-photon interference can be expressed as n — 1 photon
interference. The area in between the dashed and solid lines
is the region of parameter space where our approximation
works for n =~ k, but where the approximation fails for
n> k.

Finally, we consider the prefactor of our algorithm. The
original expression from Ref. [16] requires the computation
of roughly 2" permanents of size n, whereas the original
boson sampling proposal requires the computation of only
one such permanent. If we limit the number of computations
steps we allow ourselves for computing P, to be equal to the
number of steps required to compute an n-by-n permanent,
we arrive at the dash-dotted curves in Fig. 4. The area in
between the solid and dash-dotted curves represents the
region of the parameter space where the computational cost
scales polynomially in the number of photons, but where our
approximation might be impractical for small values of n.
Since Tichy’s expression requires the computation of many
very similar permanents, we expect that there is significant
scope for improvement on the classical algorithm at this
point, which we leave as an open problem.

Finally, we note that our results do not depend on the
original parametrization of S. In particular, if one has
Sij = x;; 4+ 6;;(1 = x;;), with |x;;| < 1, and complex x, one
can apply the error bound by setting x = max(|x;;|) in
Eq. (4). Therefore, our results apply in the experimentally
relevant case where all photons are not of equal
distinguishability.

In summary, we have shown how the limited indistin-
guishability of photons affects the hardness of the boson
sampling problem. We have presented a scheme that can
express the probability of an outcome in boson sampling as
a sum of smaller permanents when the photons are
sufficiently distinguishable. We have demonstrated that
this scheme scales polynomially in the overall photon
number, while its accuracy does not depend on photon
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number. We have used this scheme to estimate a lower
bound on the indistinguishability required to achieve a
quantum advantage.
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