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André R. R. Carvalho
Centre for Quantum Dynamics, Griffith University, Gold Coast, Queensland 4222, Australia

(Received 16 November 2017; published 29 May 2018)

Most attempts to produce a scalable quantum information processing platform based on ion traps have
focused on the shuttling of ions in segmented traps. We show that an architecture based on an array of
microtraps with fast gates will outperform architectures based on ion shuttling. This system requires higher
power lasers but does not require the manipulation of potentials or shuttling of ions. This improves optical
access, reduces the complexity of the trap, and reduces the number of conductive surfaces close to the ions.
The use of fast gates also removes limitations on the gate time. Error rates of 10−5 are shown to be possible
with 250 mW laser power and a trap separation of 100 μm. The performance of the gates is shown to be
robust to the limitations in the laser repetition rate and the presence of many ions in the trap array.
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The promise of quantum devices to benefit modern
computing technology, such as the simulation of quantum
systems and new encryption technologies, relies on the
scaling properties of quantum information processing com-
pared to classical computing [1]. Thus far, no platform has
achieved a scale that outperforms classical computers.
Architectures based on trapping ions in a single linear trap
have achieved all the operations required for viable quantum
information processing [2–10]; however, like all other
platforms, they are currently limited in the scalability of
the number of qubits [11].
While many proposed quantum computing platforms can

generate large numbers of qubits, the key figure of merit is
the number of high-fidelity entangling operations perform-
able over their decoherence time. The speed of the gate
operation therefore causes a bound on scalability. Putting
more ions in linear Paul traps, for example, requires the
trapping frequency to be lowered to prevent buckling of the
ion chain [11]. This increases the time for sideband-
resolving adiabatic gates, which operate slower than the
trapping period [12]. Attempts to overcome this limitation
have focused on several schemes using 2D arrays, where
ions are moved closer when performing gate operations
[13,14], confined in Wigner crystals inside Penning traps
[15,16], or segmented linear Paul traps, where ions are
moved between traps [17–22]. The fastest demonstrated
shuttling processes,which use schemes to relax the adiabatic
criteria [23,24], have been of the order of 5 trap periods.
While it may be possible to push the limits of adiabaticity
further, until ions are moved within one or two trap periods
[25], this still limits the number of gate operations achiev-
able before the state decoheres.

Nonadiabatic gates (“fast gates”) were proposed [26,27]
to overcome limitations on the gate time posed by
sideband-resolving adiabatic gates. Rather than attempting
to resolve motional sidebands, fast gate schemes use
broadband pulse sequences to entangle the ions and to
restore the ionic motion after the gate operation. Fast gates
improve prospects for larger computations in linear Paul
traps and have been recently demonstrated experimentally
[28–30]. Even with fast gates, practical challenges of
scalability in these geometries remain [31–33], with com-
putation in a linear Paul trap scaling to 40–50 ions before
the error due to compounding gates becomes significant
[33]. Additionally, addressing individual ions becomes
increasingly difficult as their separation decreases [34].
We propose a method of overcoming these limits using

fast gates to produce entangling operations between sep-
arate microtraps. An architecture based on trapping ions in
individual microtraps has previously been proposed [35],
which required a separate ion to be shuttled around the
array. A more recent proposal specified a simple electrode
design for a series of parallel linear traps, where magnetic
field gradients could be used to simulate spin-spin inter-
actions for a quantum simulation [36]. This architecture
allows for ions to be localized close to the minima of the
microtrap potentials; hence, the resolution of ion location is
not limited by the number of ions in the trap. The spatial
resolution is then determined by the experimental design,
and the minimum distance is limited by the feature size of
the trap. Fast gates require high laser power but do not
require ion shuttling, magnetic field gradients, or time-
dependent potentials. We show that this proposed archi-
tecture using fast gates in microtrap arrays provides greater
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scalability than both current ion shuttling-based platforms
and fast gate schemes based on linear traps. We show that
the laser parameters required to connect ions between
adjoining linear traps with high fidelity are achievable.
Multiqubit gates for trapped ions rely on the strong

Coulomb interaction they share. When ions are trapped
separately, that Coulomb interaction is generally weaker.
Rather than attempting to move the ions closer, we find that
fast gate schemes can still produce high-fidelity gates in
less than a trap period. Consider a set of Paul traps each
containing a single ion as shown in Fig. 1(a), arranged in a
linear chain with the minima between the nearest neighbor-
ing traps separated by some distance d. Microtrap designs
already exist where d is as small as 100 μm [5,37]. We
examine the feasibility of using fast gates to execute two-
qubit gates along this chain and show that, as the length of
the ion chain increases, the fidelity does not decay
indefinitely. Ultimately, we envisage that these gates will
operate between neighboring ions in arrays of individual
traps, as shown in Figs. 1(b) and 1(c). The use of Rydberg
ions could also be used to enhance this interaction through
their dipole and quadrupole coupling [38,39].
Fast gates use laser pulses to apply state-dependent

momentum kicks on pairs of ions, inducing state-dependent
energy shifts through the Coulomb interaction between the
ions. Well-chosen strengths and timing of kicks can create a
state-dependent phase shift and simultaneously return the
motional state of the ions to their initial state. This creates a
controlled phase gate ÛCPhase ¼ eiðπ=4Þσ

z
1
σz
2 , which is a suffi-

cient entangling gate for universal computation. Different
numbers of pulses and ratios between kick strengths define
different schemes.
The gate schemes we examine here are a generalization

of the fast robust antisymmetric gate (FRAG) scheme [31],
a variant of the Garcia-Ripoll, Zoller, and Cirac scheme
[26]. They consist of six groups of counterpropagating π

pulses incident on the ions to be entangled. These pulse
groups are defined by fixed ratios of pulses and some global
scaling of the pulse number given by the factor n. We
evaluate the gate fidelity as a function of the experimental
design and required total gate time and find that the
important elements of the experimental design can be
reduced to a single dimensionless parameter. Further details
of the model, approximations used, and the FRAG scheme
can be found in Supplemental Material [40].
We use numerical searches to find pulse timings that

produce high-quality gate operations, with the state-
averaged fidelity F, given as the fidelity of the postgate
statewith the target state integrated over all initial states. This
is efficient to compute and strongly related to other distance
measures for high-fidelity gates.Within the optimization,we
impose an upper bound on the pulse timings, equivalent to
setting amaximumgate time.Optimization is then run over a
set of increasing upper bounds, which allows for a simple
numerical optimization and analysis of the relationship
between the gate time and infidelity 1 − F. See Sec. III of
Supplemental Material for details of the optimization [40].
It is sensible to report results in terms of 1 − F, because

we examine fidelities extremely close to unity. While our
numerical calculations use the full infidelity defined above,
a Taylor expansion of 1 − F, justified by its small value and
given in full in Supplemental Material [40], reveals the
important parameters of the problem and helps guide our
numerical optimization.
The first important quantity is the normalized difference

between the breathing mode frequency ωBR and the
common motional mode frequency ω:

χ ¼ ωBR − ω

ω
; ð1Þ

corresponding to the relative spacing of thevibrationalmode
spectrum. We express this as a function of the experimen-
tally relevant parameter ξ ¼ ðd3ω2=αÞ with a simpler form,
where α ¼ ðe2=4πε0Þð1=MÞ. Here e is the electron charge,
M the mass of the ions, and ε0 the vacuum permittivity. See
Sec. IVof Supplemental Material [40] for further details of
the derivation of χ and expression in terms of ξ.
For a fixed value of the Lamb-Dicke parameter η, the

infidelity is fully described by the number of pulses in each
pulse train and trigonometric expressions of χ. A derivation
of this is shown in Supplemental Material [40]. The
schemes we consider have either n or 2n pulses in each
pulse train, where n is a positive integer. Therefore, n and χ
completely specify the optimal infidelities as a function of
the dimensionless gate time τG expressed in trap peri-
ods τG ¼ ðωtG=2πÞ.
To analyze the performance of fast gates in microtraps,

we find optimized gates for a large range of values of n and
χ, as a function of operational gate time τG. For some
parameter regimes, the optimized fidelity gate takes the
maximum gate time allowed by the optimization, but for

(c)(b)

(a)

FIG. 1. (a) Diagram with a 1D lattice of trapped ions sitting in
individual microtraps separated by a distance d. In this Letter, we
model this situation. In the future, more scalable arrangements
will likely consist of arrays of traps holding single or multiple
ions, as shown in (b) and (c). Fast gates can then be used
efficiently between nearby ions from different traps, without the
need for the potentials to be changed or for the ions to be moved.
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other parameter regimes the highest-quality solutions are
faster. When our optimized solutions take as long as the
gate time upper bound, their infidelities bunch along almost
monotonic curves when plotted as a function of n2χ, shown
in Fig. 2(a). When they take less time than the optimization
upper bound, shown in Fig. 2(b), their infidelities are an
almost monotonic function of n2=χ, as shown in Fig. 2(c).
As n increases, the achievable infidelity goes down without
limit as new classes of solution are found, requiring
increasing laser power. We find that, with a trap separation
of 100 μm, a 1 MHz trap, and a gate time just under the trap
period, a laser power of around 100 mW allows infidelities
of 10−2, which is sufficient to implement fault-tolerant
computation using surface codes [41]. Achieving 10−5

infidelity to implement earlier proposed schemes [42]
would require a laser power of 250 mW.
Rather than fixing the maximum gate time and examin-

ing the infidelity, we can do the reverse. The distribution of
optimized gates with a fidelity greater than 99% is shown in
Fig. 3. The empty regions in this figure indicate parameter
choices where the optimized gate requires less time than the
maximum allowed, so there is a gap until a higher-fidelity
solution exists with a longer gate time. The different
schemes caused by the reordering of the kick timings

are shown as different colored regions within Fig. 3. We can
see that there are distinct regions where one of these
schemes provides the optimal gate and that the distinct
“jumps” in parameter space are associated with a changing
scheme. The changes of behavior in Fig. 2(b) correspond to
reaching the edge of an empty region in Fig. 3.
The optimal system for gate performance in both infi-

delity and nondimensional time will be one that maximizes
the value of n. Depending on the experimental limitations, it
may be advantageous tomaximize χ, achieved by decreasing
the separation of microtraps or decreasing the trapping
frequency. However, decreasing the trapping frequency will
also increase the total dimensional gate time. It is thus
optimal to only decrease the trap separation to improve gate
times. The description of performance using the parameter
n2χ demonstrates that the parameter n has amore significant
impact on performance than χ. This indicates that a key
focus for improving gate performance should be to increase
the number of pulses in a train and, hence, the repetition rate
of the laser used.
Thus far, this analysis comes from simulations of pairs of

qubits; however, the performance for larger quantities of
qubits must be examined. Importantly, we must assess the
scaling performance as a function of the parameter χ.
Maximizing n is always beneficial in both time and fidelity,
but changing χ and the number of microtraps both affect the
dynamics of the ion chain. We use gates optimized for a
simple two-ion system and apply these to a system with
more ions. This method will not, in general, produce the
highest-fidelity gates for systems with more ions, but it

(a)

(b) (c)

FIG. 2. The infidelity of a two-ion gate plotted for many
different values of n and χ. Despite considerable structure in these
solutions, there are two types of regions in parameter space where
the gate solutions are locally simple. (a) Infidelity as a function of
n2χ for several gate time caps imposed by the optimization. This
shows that n2χ is a useful single dimensionless parameter for
predicting infidelity in this parameter region. (b) Infidelity (blue,
left vertical axis) and total gate time (red, right vertical axis) as a
function of the single nondimensional parameter n2χ. We see the
optimized solution transition from taking the full allowed time to
taking less time than allowed, while the infidelity stops being well
defined by n2χ. For larger values of n, new gate solutions of the
first type appear but with much lower infidelities. (c) Infidelity of
the gates shown in the gray shaded section in (b), showing that in
this region n2=χ is a good predictor of infidelity.

FIG. 3. Gate solutions with infidelities less than 10−2 as a
function of the gate time in trap periods τG and the parameter n2χ.
Different orderings of pulses and hence different schemes are
denoted by different colors. Here the FRAG scheme is indicated
by blue, while the red and green represent schemes with different
pulse orderings to the FRAG scheme. This shows that the optimal
scheme is generally dependent on the choice of the gate time and
experimental parameter choice. The empty regions show that
sometimes increasing the allowed gate time will not result in
decreased gate infidelity unless a threshold gate time is reached,
as indicated by the next colored region.
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allows for computationally feasible searches. As a result,
the gate time and pulse timings remain fixed over a
changing number of ions. The fidelity includes the
motional states of all the ions in the chain, and the
electronic states of the ions not being operated on are
implicitly preserved. Hence, this provides the complete
fidelity for the multi-ion system under a gate operation.
Figure 4(a) shows that gate fidelities initially decrease as

the number of ions is increased but plateau for chains of
around ten ions or more. This is due to the decreasing
impact of additional ions to the motional modes of the
system. This trend is observed when applying gates
between any two adjacent ions in the system. Here we
have investigated the impact on gates applied to a pair of
ions in the middle and on the edge of the chain, as they
exhibit the lowest and highest infidelities, respectively.
Trap geometries also affect the scaling of two-qubit

optimized gates. Figure 4(b) shows that there is a clear
dependence on χ. The data were created using a set of
randomly chosen high-fidelity gates with various values of
χ, which were then applied to both a two-ion system and a
50-ion system. The ratio of the infidelities for these two
systems shows a clear linear trend in a log-log plot. Here
this indicates a cubic relationship between the ion scaling
performance and the parameter χ.
An important feature of any quantum information

processing architecture is the performance of the architec-
ture under realistic noise and experimental error. The first
error we investigate is encountered in systems using delay
loops to achieve multiple coincident pulses, where there is
some error on the timing of the pulses. This error was
simulated by applying a Gaussian noise with a varying
standard deviation to the gate timings. The resulting
distribution of infidelities was observed to be exponential;
we use the mean of this distribution as a measure of the
average infidelity. The impact of this form of noise on the
infidelity is significant [see Fig. 5(a)], indicating that heavy

attention should be paid to ensure correct timings of gate
pulses when using a method of delay loops. Accuracies
required for high fidelities are a factor of 104 shorter than
the trapping period.
The alternate option of using a pulse picker to generate

pulse trains results in both a spreading of the pulses that
make up the impulses nj defined in the FRAG scheme as
well as a small shift in the mean timings τj of those
impulses due to the discrete pulse times. We see that the
gate infidelity remains remarkably robust to a finite
repetition rate. In Fig. 5(b), we see that gates maintain a
high fidelity up to the point where different groups of
pulses would be required to overlap. This agrees with
results previously obtained for the FRAG gate scheme in
linear Paul traps [31]. The nonmonotonicity of the infidelity
is a result of aforementioned shift in the mean gate times.
Taking all these limitations into account, we conclude

that high-fidelity fast gates can be executed between
microtraps using currently available technology. As an
example, we find a scheme that is capable of producing a
controlled phase gate in 2.5 trap periods with a fidelity of
99.8% and 99.995%, using repetition rates of 200 and 300
times the trapping frequency, respectively. Using Caþ ions,
an ∼1 MHz trapping frequency and 100 μm trap separation
( χ ¼ 1.8 × 10−4), as used in some current experimental
setups [37,43], correspond to a counterpropagating π-pulse
repetition rate of 200 and 300 MHz, respectively. This
would result in gate times of 2.5 μs. These requirements are
consistent with the 300 MHz repetition rates, achieved with
a laser power of 190 mW [44]. There is a linear relationship
between the π-pulse repetition rate and laser power; hence,
for a 200 MHz repetition rate, a laser power of 130 mW
should be expected. This is a comparable gate time and
infidelity to that reported for experimental fast gates in a
linear trap [28] but works across separate microtraps,
providing significant benefits to scalability.
In conclusion, we propose that a microtrap architecture

with fast gates provides an experimentally realizable

(a) (b)

FIG. 4. (a) Infidelity of a two-ion optimized gate (n ¼ 50,
χ ¼ 1.8 × 10−4, gate time of 1.4 trap periods), with fixed pulse
timings and gate time, with an increasing number of microtraps in
the processor. Shown for both the innermost pair of ions and the
outermost pair of ions. Here the infidelity is for the motional and
electronic state of all the ions in the chain. (b) Ratios of the
infidelity of a gate applied to a 50-ion array to the infidelity of that
gate applied to a two-ion array as a function of χ. Showing
microtraps with a low χ scale more effectively than linear traps
when using gates optimized for two-qubit systems.

(a) (b)

FIG. 5. (a) Mean infidelities of an optimized gate (n ¼ 50, gate
time of 1.4 trap periods) against the standard deviation of the
Gaussian noise applied to the timings, given in absolute trap
periods. Demonstrating fidelity is significantly decreased when
imperfect pulse timings are applied; this result was consistent for
different parameters. (b)An optimized gate (n ¼ 24,ω ¼ 2πMHz,
gate time of 2.5 μs), showing the infidelity for varying finite
repetition rates. The minimum repetition rate required to resolve
pulse trains is 135 MHz.
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platform for dramatically improved scaling for trapped ion
quantum information processing platforms. This architec-
ture compares favorably to current state of the art platforms
based on ion shuttling while requiring less complexity in
the trap geometry.
It was shown that gate fidelity was surprisingly robust to

effects of the finite laser repetition rate for the counter-
propagating π pulses. The repetition rate need only be
sufficient to maintain a separation of pulse trains, which
was shown to be experimentally feasible under a standard
set of experimental parameters.
It was shown that the fidelities of the fast gates do not

decay indefinitely as the number of ions increases.
Microtrap architectures also allow multidimensional arrays.
This has significant potential performance benefits, as the
penalties for scaling in each dimension are independent,
allowing considerably better fidelities for a given number
of qubits. Furthermore, the increased connectivity between
distant ions when using nearest-neighbor interactions helps
2D or 3D systems to require many fewer gates to perform
any given algorithm.

The authors thank R. Blatt for providing useful comments
and providing details on current ion trapping experiments.
This work was supported by the Australian Government
through the Australian Research Council’s Discovery
Projects funding scheme (Project No. DP130101613).

*u6141396@anu.edu.au
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, England, 2010), p. 702.

[2] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett,
J. Britton, W. M. Itano, B. Jelenković, C. Langer, T.
Rosenband, and D. J. Wineland, Nature (London) 422,
412 (2003).

[3] Y. H. Chen, Y. Xia, Q. Q. Chen, and J. Song, Phys. Rev. A
91, 012325 (2015).

[4] D. Kielpinski, Front. Phys. China 3, 365 (2008).
[5] D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K.

Schwab, and C. Monroe, Nat. Phys. 2, 36 (2006).
[6] S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D.

Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J.
Epstein, D. B. Hume, W.M. Itano, J. D. Jost, C. Langer, R.
Ozeri, N. Shiga, and D. J. Wineland, Phys. Rev. Lett. 96,
253003 (2006).

[7] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni,
H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas,
Phys. Rev. Lett. 113, 220501 (2014).

[8] C. Monroe, D. M. Meekhof, B. E. King, W.M. Itano, and
D. J. Wineland, Phys. Rev. Lett. 75, 4714 (1995).

[9] J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, Nat.
Phys. 4, 463 (2008).

[10] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K.
Wright, and C. Monroe, Nature (London) 536, 63 (2016).

[11] D. Wineland, C. Monroe, W. Itano, D. Leibfried, B. King,
and D. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259
(1998).

[12] F. Schmidt-Kaler, S. Gulde, M. Riebe, T. Deuschle, A.
Kreuter, G. Lancaster, C. Becher, J. Eschner, H. Häffner,
and R. Blatt, J. Phys. B 36, 623 (2003).

[13] R. B. Blakestad, C. Ospelkaus, A. P. Vandevender, J. M.
Amini, J. Britton, D. Leibfried, and D. J. Wineland, Phys.
Rev. Lett. 102, 153002 (2009).

[14] H. Häffner, C. F. Roos, and R. Blatt, Phys. Rep. 469, 155
(2008).

[15] J. D. Baltrusch, A. Negretti, J. M. Taylor, and T. Calarco,
Phys. Rev. A 83, 042319 (2011).

[16] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M.
Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297
(2016).

[17] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature
(London) 417, 709 (2002).

[18] J. M. Amini, H. Uys, J. H. Wesenberg, S. Seidelin, J.
Britton, J. J. Bollinger, D. Leibfried, C. Ospelkaus, A. P.
Vandevender, and D. J. Wineland, New J. Phys. 12, 033031
(2010).

[19] R. Reichle, D. Leibfried, R. B. Blakestad, J. Britton, J. D.
Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, and D. J.
Wineland, Fortschr. Phys. 54, 666 (2006).

[20] S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler,
Fortschr. Phys. 54, 648 (2006).

[21] G. Huber, T. Deuschle, W. Schnitzler, R. Reichle, K. Singer,
and F. Schmidt-Kaler, New J. Phys. 10, 013004 (2008).

[22] H. Kaufmann, T. Ruster, C. T. Schmiegelow, F. Schmidt-
Kaler, andU. G. Poschinger, New J. Phys. 16, 073012 (2014).

[23] E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno,
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