
 

Comment on “Emergence and Evolution of the k Gap
in Spectra of Liquid and Supercritical States”

It is well known [1] that liquids can support the
propagation of transverse (T) acoustic-like excitations at
the nanoscale if the T waves “see” the atomic structure of
the media as frozen. Under such circumstances, it holds the
long-wavelength dispersion relation [2,3]
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where τM ¼ η=G is the Maxwell relaxation time and
cT ¼ ffiffiffiffiffiffiffiffiffi

G=ρ
p

is the transverse sound velocity (η, G, and
ρ are the viscosity, high-frequency shear modulus, and
density, respectively). It immediately follows that while
transverse waves can propagate at any frequency the
squared root in Eq. (1) implies a T gap in k space below:
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In a recent Letter, Yang and collaborators [4] proposed a
different estimation for the T excitation gap,

kgap ¼ ð2τFcTÞ−1 ð3Þ
where, besides using an approximate linear slope of ωTðkÞ
as a proxy for macroscopic cT , they substitute the shear
stress relaxation time with a single-particle time, “the full
period of the particles jump motion equal to twice
Frenkel’s” τF. Furthermore, in the Supplement Material
of Ref. [4], τF was identified with the alpha-relaxation time.
Since the proposal [4] challenges old and well established
paradigms, we performed a check via molecular dynamics
(MD) simulation of the applicability of τF to calculations of
the T gap in supercritical Ar at T ¼ 280 K. The kgap value
resulting from the simulation (upper inset in Fig. 1) for
density 1621.2 kg=m3 turns out to be ∼0.27 Å−1. From
Eq. (2), using the Maxwell relaxation time, obtained via the
Green-Kubo integral for shear viscosity of 4 × 10−4 Pa s
(NIST database [5] for fluid Ar at 280 K gives
3.45 × 10−4 Pa s) and the calculated high-frequency shear
modulus G ¼ 2.56 GPa, we obtained τM ∼ 0.156 ps and T
gap∼0.25 Å−1, in good agreement with MD results. On the
contrary, using the calculated Frenkel time by definition
[6,7] [i.e., as the timescale required for a particle to reach a
distance equal to the position of the first maximum of
the pair distribution function, gðrÞ] τF ∼ 4.3 ps in
Eq. (3) results in an order of magnitude smaller T gap
kgap ∼ 0.01 Å−1. Finally, the cross symbols in Fig. 1 show
that the disagreement persists in a wide range of densities
due to τF ≫ τM. This is in line with the large difference
between alpha-relaxation and Maxwell relaxation times
well documented in the literature [8].

In summary, the application of the single-particle timescale
τF in the calculations of the T gap in [4] is inconsistent—by
one order ofmagnitude—with the estimate from theMaxwell
relaxation τM, which correctly describes the MD observed T
gap of dense liquids. Moreover, it contradicts the macro-
scopic viscoelastic equation for collective T excitations.
Accordingly, the proposal of determining the T gap in a
collective property (Twaves spectrum)usinga single-particle
timescale (the Frenkel time) turns out to be unjustified.
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FIG. 1. Dependence of the T gap on density for supercritical Ar
at 280 K via Eqs. (2) and (3). The Maxwell time was calculated
with NIST data [5] for shear viscosity. Red symbols with error
bars correspond to MD results. The inset shows the dispersion of
T excitations with the gap ∼0.27 Å−1, calculated from peaks of a
T current spectral function C̃Tðk;ωÞ.
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