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In this Letter, we investigate stochastic stability in a two-phenotype evolutionary game model for an
infinite, well-mixed population undergoing discrete, nonoverlapping generations. We assume that the
fitness of a phenotype is an exponential function of its expected payoff following random pairwise
interactions whose outcomes randomly fluctuate with time. We show that the stochastic local stability of a
constant interior equilibrium can be promoted by the random environmental noise even if the system may
display a complicated nonlinear dynamics. This result provides a new perspective for a better under-
standing of how environmental fluctuations may contribute to the evolution of behavioral diversity.

DOI: 10.1103/PhysRevLett.120.218101

Since the concept of evolutionarily stable strategy (ESS)
has been introduced in evolutionary game theory [1], it has
been successfully applied to explain the evolution of animal
behaviors, in particular, altruistic behaviors (or cooperative
behaviors) [2–7]. Studies of evolutionary game dynamics
start with the replicator equation [8] and focus to a great
extent on the time evolution and long-term maintenance of
population states pertaining to behavioral diversity [4–7].
In the archetypal framework of matrix games in discrete
time, there are two important assumptions that are usually
made or implicit: the first one is that the fitness of an
individual is a simple linear function of the expected payoff
of its phenotype, and the second one is that the payoff
matrix in pairwise interactions is a constant matrix [2,4–7].
However, both these two assumptions cannot be considered
to be always true, or completely real. In this Letter, we
address the consequences of relaxing these assumptions by
considering (i) a random payoff matrix in pairwise inter-
actions, and (ii) a nonlinear, actually exponential, fitness
function with respect to the expected payoff.
It may be useful to recall the origins of the replicator

equation in evolutionary game theory [2,5,8,9]. The equation
in continuous timewas obtained by assuming that the payoff
is the current growth rate. If ni is the current number of i
strategists in a population of large size N ¼ P

ini, then its
time derivative is _ni ¼ niπi where πi is the payoff to i
assumed to be frequency dependent. This leads directly to the
replicator equation _xi ¼ xiðπi − π̄Þ where xi ¼ ni=N is the
relative frequency of i and π̄ the average payoff. In discrete
time, we have the approximation niðtþ 1Þ ¼ niðtÞeπiðtÞ,
from which xiðtþ 1Þ ¼ ½xiðtÞeπiðtÞ=

P
jxjðtÞeπjðtÞ�. This is

a good approximation if the payoffs change little in the time
interval ½t; tþ 1� or if this interval is small. This supports

fitness in discrete time defined as an exponential function of
the payoff, that is,fi ¼ eπi , which is approachedby the linear
function 1þ πi in the case of weak selection [2,10]. As
already known, an exponential fitness may lead to very
complicated dynamics even in the case of matrix games with
only two phenotypes [11–17].
Our objective in this Letter is not only to study the effects

of a nonlinear fitness function on matrix game dynamics but
also the effects of introducing stochastic perturbations of the
payoffs. Randomness (or uncertainty) in the environment is
one of the main characteristics of nature, and this random
noise will generally affect the results of interactions between
species and between individuals [18–21]. Therefore, vari-
ability in payoffs as measured by their variances and
covariances have to be taken into account in order to better
understand evolutionary outcomes in natural populations.
Below are two examples to show that a randompayoffmatrix
is a reasonable assumption in evolutionary game theory and
mathematical ecology.
The Lotka-Volterra (LV) equation is one of the most

important theoretical models in ecology [18]. This equation
for the densities of species near equilibrium assumes that the
growth rate in continuous time depends on environmental
carrying capacities. This equation can be transformed into the
replicator equation by introducing one more species and by
changing time [5]. More importantly, the payoffs in this
equation are random variables if the carrying capacities are
randomvariables. This is the casewith stochastic fluctuations
in the environment, which is the rule in nature rather than the
exception.
Another example is provided by the payoff matrix in the

case of repeated rounds of the same matrix game between
the same two players chosen at random. This is the case, for
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instance, with the strategies TFT and AllD in a repeated
Prisoner’s Dilemma for modeling the evolution of co-
operation. If the number of repetitions of the game is a
random variable (e.g., a geometric random variable in the
casewhere each round is followed by a next roundwith some
fixed probability [6,21]), then the payoff matrix is a random
matrix. More generally, a random payoff matrix is a
reasonable assumption in evolutionary game theory in order
to deal with more realistic or more complex situations.
In order to take into account stochastic fluctuations in the

surrounding environment, deterministic evolutionary con-
cepts such as evolutionary stability and convergence
stability have to be extended. Random payoffs received
by randomly pairwise interacting individuals in an infinite
population undergoing discrete, nonoverlapping genera-
tions were considered till recently in a two-phenotype
setting, and the concepts of stochastic evolutionary stability
(SES) and stochastic convergence stability (SCS) were
developed [21]. Although this study shows that a random
environmental noise may have an important impact on the
stability nature of an equilibrium and, therefore, on the
evolution of animal behavior, it still assumes that the fitness
of an individual is a linear function of the expected payoff
of the exhibited phenotype, which corresponds to an
assumption of weak selection. Here we will consider the
more general case of an exponential function.
A two-phenotype model.—For simplicity, consider a two-

phenotype evolutionary game in an infinite population with
discrete, nonoverlapping generations. The two phenotypes
(or strategies) are denoted by R1 and R2, respectively, and
the payoffs in pairwise interactions at time step t (with
t ≥ 0) are given by the matrix

AðtÞ ¼
�
a11ðtÞ a12ðtÞ
a21ðtÞ a22ðtÞ

�
¼

�
at bt
ct dt

�
; ð1Þ

whereaijðtÞ is the payoff to strategyRi against strategyRj for
i, j ¼ 1, 2. In general, these payoffs are assumed to be
random variables with haijðtÞi ¼ āij, hðaijðtÞ − āijÞ2i ¼
σ2ij, and hðaijðtÞ − āijÞðaklðtÞ − āklÞi ¼ σij;kl for i, j, k,
l ¼ 1, 2 with ði; jÞ ≠ ðk; lÞ. As for s ≠ t, the payoffs
aijðsÞ and aklðtÞ are assumed to be independent of each
other so that hðaijðsÞ − āijÞðaklðtÞ − āklÞi ¼ 0 for i, j, k,
l ¼ 1, 2 [21]. Besides, a further technical assumption
is that there exist real numbers A, B > 0 such that PðA ≤
aijðtÞ ≤ BÞ ¼ 1 for all i, j ¼ 1, 2.
Let xt denote the frequency of strategy R1 at time step t

and, similarly, 1 − xt the frequency of strategy R2.
Assuming random pairwise interactions, the expected
payoffs of R1 and R2 at time step t are given by π1;t ¼
xtat þ ð1 − xtÞbt and π2;t ¼ xtct þ ð1 − xtÞdt, respectively.
The fitnesses of R1 strategists and R2 strategists at time step
t are defined as f1;t ¼ eπ1;t and f2;t ¼ eπ2;t , respectively
[11–14,16,17]. Then, the average fitness of the population
at time step t is f̄t ¼ xtf1;t þ ð1 − xtÞf2;t, and the fre-
quency of R1 at time step tþ 1 can be expressed as

xtþ1 ¼
xteπ1;t

xteπ1;t þ ð1 − xtÞeπ2;t
ð2Þ

for t ≥ 0 [14,15].
Random environmental noise and stochastic local sta-

bility.—In the absence of random environmental noise, that
is, in the situation where σ2ij ¼ 0 for all i, j ¼ 1, 2 so that
the payoff matrix in Eq. (1) is a constant matrix
AðtÞ ¼ ðāc̄ b̄

d̄Þ, Eq. (3) reduces to a deterministic recurrence
equation. For this deterministic recurrence equation, it has
been shown that (i) only one equilibrium with x� with 0 <
x� < 1 (called interior equilibrium) exists and is given by
x� ¼ ðb̄ − d̄Þ=γ if b̄ − d̄ and c̄ − ā are both positive or both
negative, where γ ¼ b̄ − d̄þ c̄ − ā, (ii) x� is globally
asymptotically stable if 0 < γ < 2=x�ð1 − x�Þ, and (iii) as
γ increases such that γ > 2=x�ð1 − x�Þ, there are period-
doubling bifurcation and chaos [15]. In the special case
where x� ¼ 1=2, for instance, only one stable periodic two-
cycle is possible for γ > 8.
If at least one σ2ij for i, j ¼ 1 or 2 is nonzero, which

means that the random environmental noise is not degen-
erate, then Eq. (3) is a stochastic recurrence equation. In
order to study the asymptotic (or long-run) behavior of the
process fxtg, suppose that x̃ is a constant (nonrandom)
equilibrium of fxtg, that is, an equilibrium of Eq. (3) that
does not depend on the randomness of the payoff matrix.
Obviously, both x̃ ¼ 0 and x̃ ¼ 1 are constant equilibria of
Eq. (3) (called also the fixation states or the boundary
equilibria of the system). Moreover, x̃ is called a constant
interior equilibrium if it satisfies 0 < x̃ < 1 [21–23]. Based
on definitions introduced in Karlin and Liberman [22,23], a
constant equilibrium x̃ is said to be stochastically locally
stable (SLS) if for any ϵ > 0 there exists δ0 > 0 such that
Pðxt → x̃Þ ≥ 1 − ϵ as soon as jx0 − x̃j < δ0, while a con-
stant equilibrium x̃ is said to be stochastically locally
unstable (SLU) if Pðxt → x̃Þ ¼ 0 as soon as jx0 − x̃j > 0.
Using the above definitions, we give below simplified

mathematical arguments for the stochastic local stability of
a constant equilibrium (the more rigorous mathematical
proofs are similar to those in Ref. [21]).
Let ut ¼ xt=ð1 − xtÞ. Then Eq. (3) can be equivalently

expressed as

utþ1 ¼ uteπ1;t−π2;t : ð3Þ

Consider first the stochastic local stability of the boundary
equilibrium x̃ ¼ 0, which corresponds to ũ ¼ 0. Notice that
ut → 0 if and only if xt → 0. Iterating the above recurrence
equation leads to

1

n
ðlog un − log u0Þ

¼ 1

n

Xn−1
t¼0

�
ðbt − dtÞ þ ðat − bt − ct þ dtÞ

ut
1 − ut

�
: ð4Þ
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Therefore, if ut → 0 and b̄ − d̄ ≠ 0, then the strong law of
large numbers guarantees that

0 ≥ lim
n→∞

1

n
ðlogun − logu0Þ ≈ lim

n→∞

1

n

Xn−1
t¼0

ðbt − dtÞ ¼ b̄ − d̄:

ð5Þ
We conclude that the boundary equilibrium x̃ ¼ 0 is SLU if
b̄ − d̄ > 0. On the other hand, using Egorov’s theorem, it
can be shown that x̃ ¼ 0 is SLS if b̄ − d̄ < 0 [21,23].
Suppose that there exists ũ > 0 such that ũðat − ctÞ ¼

dt − bt for all possible t ≥ 0. Then the random payoff
matrix can be expressed as�

at bt
ct dt

�
¼

�
ct þ zt bt
ct bt þ ũzt

�

¼
�

at dt − ũzt
at − zt dt

�
; ð6Þ

where zt ¼ at − ct. In this situation, Eq. (3) admits a
constant interior equilibrium, given by x̃ ¼ ũ=ð1þ ũÞ with
0 < x̃ < 1. Moreover, the previous analysis ascertains that
the two fixation states x̃ ¼ 0 and x̃ ¼ 1 are both SLS if
z̄ ¼ ā − c̄ > 0 and both SLU if z̄ ¼ ā − c̄ < 0. Now, in
order to study the stochastic local stability of x̃ ¼
ũ=ð1þ ũÞ, let Eq. (4) be rewritten as

utþ1 ¼ ute
−ũztþð1þũÞzt ut

1þut : ð7Þ
A Taylor expansion around ũ leads to the approximation

utþ1 − ũ ≈
�
1þ ũ

1þ ũ
zt

�
ðut − ũÞ; ð8Þ

from which

lim
n→∞

1

n
ðlogðun − ũÞ2 − logðu0 − ũÞ2Þ

≈
�
log ð1þ ũ

1þ ũ
ztÞ2

�
: ð9Þ

Then it can be shown that the constant interior equilibrium
x̃ ¼ ũ=ð1þ ũÞ is SLS if

hlog ð1þ x̃ztÞ2i < 0; ð10Þ
and SLU if the inequality is reversed. Developing
log ð1þ x̃ztÞ2 around z̄ ¼ ā − c̄ yields

hlog ð1þ x̃ztÞ2i ≈ logð1þ x̃ z̄Þ2 −
�

x̃
1þ x̃ z̄

�
2

σ2z ; ð11Þ

where σ2z ¼ σ2a þ σ2c − 2σa;c. Therefore, as long as the
random environmental noise does not vary too much,
the constant interior equilibrium x̃ ¼ ũ=ð1þ ũÞ is SLS if

σ2z >

�
1þ x̃ z̄

x̃

�
2

logð1þ x̃ z̄Þ2; ð12Þ

and SLU if the inequality is reversed. This result shows not
only that the two boundary equilibria (x̃ ¼ 0 and x̃ ¼ 1) and
the constant interior equilibrium [x̃ ¼ ũ=ð1þ ũÞ] can be
simultaneously SLS, but also that an increase in the variance
of the environmental noise (σ2z) will promote the stochastic
local stability of the constant interior equilibrium.
In order to test the above theoretical predictions, three

numerical examples are investigated below using computer
simulations in the case of a random payoff matrix in
the form of Eq. (9) with a constant interior equilibrium
x̃ ¼ ũ=ð1þ ũÞ.
Example 1.—If we take ũ ¼ 1 in Eq. (9), then x̃ ¼ 1=2 is a

constant interior equilibrium. From our theoretical results,
both x̃ ¼ 0 and x̃ ¼ 1 are SLS if z̄ > 0, while x̃ ¼ 1=2 is SLS
if σ2z > ð2þ z̄Þ2 logð1þ z̄=2Þ2. The simulation results
based on Eq. (3) are plotted in Fig. S1 (see Ref. [24]), in
which we take z̄ ¼ 0.1 and σ2z ¼ 4. These simulations
strongly support the theoretical predictions, that is, both
boundaries and the constant interior equilibrium can be
simultaneously SLS. Notice that in the absence of random
environmental noise (σ2z), both boundaries and the constant
interior equilibrium cannot be simultaneously locally stable.
Example 2.—Similarly to example 1, we take ũ ¼ 1 in

Eq. (9) so that x̃ ¼ 1=2 is a constant interior equilibrium. If
z̄ < 0, then both x̃ ¼ 0 and x̃ ¼ 1 are SLU. On the other
hand, if σ2z ¼ 0, then x̃ ¼ 1=2 is globally asymptotically
stable if jz̄j < 4 (with z̄ < 0), while only one stable periodic
two-cycle can exist when jz̄j > 4 [15] [see Fig. S2(a) in
Ref. [24] ]. For z̄ ¼ −6 and σ2z > 0, the simulation results
show the following: (i) when σ2z is small, the probability
distribution of xt over time is bimodal about x̃ ¼ 1=2 [see
Fig. S2(b) in Ref. [24] ]; and (ii) as σ2z increases, a new peak
of probability distribution appears at x̃ ¼ 1=2, and the
amount of probability near the constant interior equilibrium
x̃ ¼ 1=2 rapidly increases [see Figs. S2(c) and S2(d) in
Ref. [24] ]. Obviously, the increase of σ2z promotes the
stochastic local stability of x̃ ¼ 1=2. However, we can see
also that, although the increase of σ2z leads to a new peak of
the probability distribution at x̃ ¼ 1=2, the period doubling
characteristic of the system is not completely destroyed if
σ2z is not too large.
Example 3.—In this example, we take ũ ¼ 1=2 in Eq. (9)

so that x̃ ¼ 1=3 is a constant interior equilibrium. If z̄ < 0,
then both x̃ ¼ 0 and x̃ ¼ 1 are SLU. On the other hand, if
σ2z ¼ 0, then x̃ ¼ 1=3 is globally asymptotically stable if
jz̄j < 6 (with z̄ < 0), while an increase of jz̄j (with jz̄j > 6)
leads to period-doubling bifurcation and chaos [15] [see
Fig. 1(a)]. Here, we take z̄ ¼ −9 so that the system exhibits
a stable periodic four-cycle if σ2z ¼ 0 [see also Fig. 1(a)].
Similarly to the results in example 2, we notice that (i) when
σ2z is small (but σ2z ≠ 0), the probability distribution of xt
over time shows four peaks (this phenomenon exactly
matches the nonlinear dynamical characteristics of the
system) [see Fig. 1(b)], and (ii) with the increase of σ2z ,
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a new peak of the probability distribution appears at x̃ ¼
1=3 and the amount of probability near x̃ ¼ 1=3 is also
positively related to the size of σ2z [see Figs. 1(c)–1(f)].
Conclusion and discussion.—Our theoretical results and

simulations on evolutionary games with a random payoff
matrix clearly show that stochastic fluctuations in the payoffs
as a result of random noise in the environment make the
dynamical system much more complex, namely, that an
increase in the level of environmental noise could promote
stochastic local stability of a constant interior equilibrium.
Although it may look at first glance that the matrix games
considered in this Letter have totally uncertain outcomes, this
is not the case. The payoffs in pairwise interactions are not
assumed to be independent identically distributed random
variables. In particular, they are not assumed to have the same
expected value. The structure of the game is determined by
the expected payoffs which in turn determine the dynamical
properties of fixation states as well as interior equilibria if
they exist in the absence of variability. The local stability
properties and conditions have to be extended when random

perturbations on the payoffs are introduced. These exten-
sions for fixation states can be used to define stochastic
evolutionary concepts such as stochastic evolutionary sta-
bility and stochastic convergence stability [21].
In this Letter, we have focused on the existence of

a stochastically locally stable interior equilibrium in a
discrete-time two-phenotype model with an exponential
function of the payoff as fitness to best approximate a
continuous-time model. The three examples allow us to
address the global dynamics of the system and make
evolutionary predictions in the most interesting cases,
namely, when the fixation states are both stochastically
locally stable or both stochastically locally unstable. As
shown, an increase in the variance of environmental noise
(σ2z) favors the stochastic local stability of an interior
equilibrium even in the former case, which is rather
surprising. In our simulations, a gradual increase in the
environmental noise intensity leads to a gradual increase in
the probability distribution of the population state over a
long period of time near the constant interior equilibrium at
which all individuals have the same average fitness.
Moreover, this is in agreement with the mathematical
condition for a constant interior equilibrium [Eq. 14] to
be SLS, so that the population state tends to wander around
it. Notice that the stochastic local stability of the constant
interior equilibrium depends not only on the averages of the
payoffs but also on their variances and covariances contrary
to the boundary equilibria. This is a characteristic of the
stochastic model compared to the deterministic model that
can make possible the coexistence of a SLS interior
equilibrium with two SLS boundary equilibria as environ-
mental noise intensity increases.
Our conclusion may seem counterintuitive and has

important biological implications. There is an analogy,
however, between our results on SLS equilibria in an
evolutionary game model as a function of noise intensity
and noise-induced transitions in the number of peaks in
stationary probability densities of diffusion processes for
stochastic differential equations models in physics, chem-
istry, and biology [25]. On the other hand, May [26] found
that a simple deterministic logistic difference equation can
lead to periodic limit cycles and chaos. This discovery led
people to believe that nonlinear biological systems could
result in the emergence of complex dynamics, and that such
dynamics (especially chaos) should be easily observable in
natural populations. Nevertheless, the majority of attempts
to find chaos in nature have either drawn a blank or
remained controversial. Since then, several studies have
aimed to explain why natural populations do not exhibit
chaos [27]. Our results on the effects of random noise on
evolutionary game dynamics can provide some clues for
addressing this question, mainly, that stochastic fluctua-
tions in the environment may play a role in impeding the
emergence of complex dynamical behaviors in natural
populations. The explanation might be that a random

FIG. 1. An increase of σ2z promotes the stochastic local stability
of x̃ ¼ 1=3. (a) For the random payoff matrix ð1þzt

1
1

1þzt=2
Þ with

z̄ ¼ −9, if σ2z ¼ 0, both boundaries and the constant interior
equilibrium x̃ ¼ 1=3 are unstable and there is a stable periodic
four-cycle (red dash line). (b) For σ2z ¼ 0.01, the probability
distribution of xt exhibits four peaks, characteristic of a stable
periodic four-cycle, when σ2z is small (but σ2z ≠ 0). (c)–(f) For
σ2z ¼ 0.25, 9, 16, 25 in panels (c)–(f), respectively, we can see
that increasing σ2z not only leads to the appearance of a new peak
of probability distribution of xt at x̃ ¼ 1=3, but also to an increase
in the amount of probability near x̃ ¼ 1=3.
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environment favors the evolution of more robust equilib-
rium population strategies but this remains to be confirmed
by further studies.
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