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The singularities of the dynamical response function are one of the most remarkable effects in many-body
interacting systems. However in one dimension these divergences only exist strictly at zero temperature,
making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a
finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-
range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium
protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials
and then joined. We show that the nonequilibrium steady state emerging at large times around the junction
displays edge singularities in the response function and quasilong-range order.
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Introduction.—X-ray edge singularities are one of the
most spectacular phenomena of strongly correlated fer-
mionic systems. These are divergences (in general non-
analycities) of the response functions in the vicinity of the
threshold energies caused by the Fermi sea structure of the
many-body ground state. The general theory of edge
singularities was developed in late 1960s [1-7] and since
then has been one of the hallmarks of nonperturbative
quantum many-body physics.

In metals, absorption of a high energy photon (x-ray)
with momentum k creates a core hole by exciting one of the
electrons to the conductance band. At zero temperature, the
Fermi sea is completely filled, and therefore, there is a
threshold energy w_(k) for such a process to occur. The
response of the system is then controlled by two competing
processes. The created core hole for the conductance
electrons leads to the orthogonality catastrophe [1], which
decreases the response. On the other hand, the attractive
interaction between the electron and the core hole enhances
the response [2]. Both effects are nonperturbative and the
result of their competition is encoded in the exponent u(k)
controlling the behavior of the dynamic structure factor
(DSF) in the vicinity of w_(k)

Sk, w) =~ S_(k)|w — w_ (k). (1)

The threshold exponent p(k) is proportional to the scatter-
ing phase of conduction electrons at the Fermi surface with
the core hole. The scattering phase, that depends on the
microscopic interactions, can be negative or positive
resulting in either the singularity or vanishing of the
DSFE. Over the years, the edge singularities were observed
in many electronic systems. The most direct observation is
the absorption of the x-rays in metals, e.g., [8—10]. They

0031-9007/18/120(21)/217206(7)

217206-1

also appear in other situations like, for example, resonant
tunneling experiments [11] or a quantum dot coupled to a
degenerate electron gas [12].

Phenomena of the same nature also appear in non-
metallic one-dimensional (1D) systems. In 1D systems, the
presence of the interactions also leads to a formation of the
Fermi sea for nonfermionic systems, such as the Lieb-
Liniger gas of bosons [13]. The Fermi sea structure of the
ground state is a universal feature of 1D quantum liquids, as
described by the Luttinger liquids (LL) theory [14,15],
which supersedes the Fermi liquid description valid in
higher dimensions. The Luttinger liquid physics were very
recently observed experimentally [16] and also in a number
of other situations in the past years [17—-19]. Like in metals,
the presence of an effective Fermi sea and interactions
creates suitable conditions for the appearance of the edge
singularities. This intuition resulted in a full-fledged theory
of nonlinear Luttinger liquids [20] (NL-LL), for which the

FIG. 1. Nonequilibrium protocol to observe edge singularities
in the NESS. Top: two quantum gas at different density n are
prepared and then joined together, Bottom. After waiting some
time that the system reaches its steady state close to the junction
(see plot of the density n(x) on the right) a Bragg pulse is shined
around the center of the cloud to probe its dynamical correlations.
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Lieb-Liniger model served as the main playground [21].
The theory of NL-LL predicts the edge singularities in the
response functions to be a universal feature of the ground
states of quantum liquids in 1D [20,22-26].

However, the edge singularities in 1D have avoided
experimental observation so far, except for few qualitative
results as in [27]. The main reason being that the ground
state physics of gapless systems are obscured by the usual
presence of finite temperature fluctuations that hide the
quantum correlations. Indeed, while in 3D metals the Fermi
temperature is of order of 10° kelvins, for ultracold gases in
typical experimental settings this is of the order of nano-
kelvins. On the other hand, the edge singularities physics
are not limited to equilibrium states. Indeed, the main
ingredient necessary for their appearance is a discontinuity
in the fermionic occupation number. Nonequilibrium states
of matter displaying edge singularities were theoretically
proposed in past, like a state with two or more Fermi seas
with different chemical potentials [28-31]. Another exam-
ple is a defected Fermi sea (Moses state), which was
introduced both in 3D [32] and 1D systems [33,34]. The
past few years have witnessed huge developments in
studies of low dimensional systems out of equilibrium
[35-40] and the possibility of creating exotic states of
matter via out-of-equilibrium protocols [41-47]. Among
them, and interesting from the edge singularities point of
view, are the so-called bipartite quench protocols [48-70].
They consist of two extended and independent systems at
thermal equilibrium, albeit at different temperatures, 7'
and T'g, and/or densities, n; and ng. At time ¢ = 0, the two
systems are connected, see Fig. 1, and at late times close to
the junction, a translationally invariant nonequilibrium
steady state (NESS) emerges. Given the (quasi-) particles
of the model with momentum k(1) [with 1 € R, the rapidity
variable that parametrizes the particle momenta k(4)] and
their (dressed) dispersion relation &(4), their momentum
distribution 9(4) € [0, 1] in the NESS takes the following
form in terms of the Heaviside ® function

Ingss (4) = O(vngss(4)) 9L (1) + O( = vngss(4)) I (4)-
(2)

Here, the velocity vngss(4) is the group velocity of the
quasiparticles in the NESS state. For free models and
relativistic invariant field theories, this is a global parameter
(or function) of the theory [52,71-73]. For interacting
models, this is instead a nontrivial functional of the
distribution 9nggs(4) [64,65], and therefore, Eq. (2) has
to be solved recursively. While the NESS state (2) requires
the presence of stable (or at least long-lived) quasiparticle
excitations, recently it was shown that at low temperature,
the form (2) is also valid for generic 1D interacting
models [74].

The presence of the discontinuity in (2), at 4y such that
vness (dg) = 0, suggests, according to the general theory

introduced above, that the DSF of the NESS state might
exhibit edge singularities. In this Letter, we show that this is
indeed the case, and we characterize the threshold energies
and threshold exponents. To achieve this, we use a recently
developed approach to the DSF for the Lieb-Liniger model
introduced in [75,76].

Dynamical correlations of the NESS.—We focus here on
the Lieb-Liniger model [13] for interacting bosons with
repulsive coupling ¢ > 0. The model is experimentally
relevant for cold atomic physics [77-88], and its non-
equilibrium properties, especially after a quantum quench
[85,89-101], have attracted a lot of attention in recent
years. Its Hamiltonian density is given by

H(x) =~y (x) Ry (x) + ey’ (y ' (yw(x)y(x). (3)

with y(x) representing the canonical Bose field. The group
velocity of the quasiparticles is given in terms of §(1) by an
integral equation [102]

+o0

o) =20+ [ TRWOG-)900) 0l - o). (4
with the scattering phase of the model 6(4) =2arctan(4/¢)
and with the momentum given by k(1) =1+
J72dud(2 — u)d(u). If we specialize to the NESS state,
the filling function 9(4) is given by Eq. (2), and it displays a
discontinuity at 4y. We denote the height of the discontinuity
by A9 = 9, (49) — 9 (Ay).

We consider the two-point correlation function S(x, t) =
(NESS|p(x, £)p(0,0)|NESS) of the density operator
p(x) = w' (x)y(x). Our main interest is its Fourier trans-
form, the DSF

+oo +oo R
S(k,w) = / dt / dxe'®™=o0S(x,1).  (5)

In the Lieb-Liniger gas, being an interacting model, the
density operator can create any number of pairs of particle-
hole excitations on the reference state. Each particle-hole
pair corresponds to a local (small) modification of the
filling function 9(4) at positions of the particle p and hole
h. We denote a state with a single particle-hole pair as
INESS, & — p). The momentum k and the energy @ of this
excited state with respect to the [NESS) is [103,104]

w = &(p) —e(h), (6)

where k(1) was defined above and &(4) is the dressed
energy €(4) =22 +2 [T®daaF(ald)9(a), such that the
group velocity is given by v(4) = 0e(4)/0k(A). The back-
flow function (the dressed scattering phase) obeys an
integral equation

k= k(p) = k(h),

+o0

27F (M) = 0(A—a) + / AV F(X|a)K (=1, (7)

—o0

with the scattering kernel given by K(1) = d@(4)/dA.
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The spectral representation of S(k, w) can be organized
in the sum over the number of created particle-hole
excitations and expressed through the form factor of the
density operator (NESS|p(0)|NESS, 2 — p). These form
factors for the Lieb-Liniger model on a finite line of length
L were derived in [105], and since then, they were studied
and used in the computation of the correlation functions
[106-109]. In [75,76,110], we have studied a general
expression for the thermodynamic limit of such form
factors and shown that their form depends strongly on
the analyticity of the distribution function §(4) and on the
momentum carried by the excitation, see Supplemental
Material [111]. When the state is characterized by a
discontinuous 9(4), the form factors contain singularities
that strongly complicate the computation of the DSF, see,
e.g., [106,107]. However, if the external momentum k is
small enough compared with the scale k*, which is due to
the discontinuity AJ, the form factors take a manageable
form. One of the consequences of this is that at a small
momentum, the leading order of the DSF is given by the
form factors of a single particle-hole pair, which reads [76]

ASF (4)

Ag—h ’ (8)

Ao—p

|(NESS|p(0)[NESS. = p)| =K (p)

with corrections of order k. Here, F(1) = F(4|p) — F(4|h)
is the backflow of the particle-hole excitation and its sign is
opposite to that of the momentum k. Equation (8) holds if
the momentum k of the excited state is smaller than two
scales appearing in the problem: the scale k* given by k* =
|(K'(20)/0,F (A9|4)],-;,)| [76] and the interaction parameter
¢. We assume that k/k* < 1 and k/c < 1.

For each choice of (k,w), there is the corresponding
excitation (p,h). The correlation function in (5) is then
equal to a single form factor contribution multiplied by the
Jacobian of the change of variables from (p, &) to (k, )
and up to corrections of order k/c is [111]

S(k, @) = D(k, »)|(NESS|p(0)|NESS, h — p)[2.  (9)

The density of states D(k,w) = (3(h)(1 —8(p))/|v(p) —
v(h)|) and the position of particle and hole, p, h, are given
by the energy and momentum conservation. The same
formula, with |NESS) replaced by a thermal state
[104,112], holds at thermal equilibrium. Figures 2 and 3
show the dynamic structure factor computed with this
formula for the NESS state and a thermal state.

The singular behavior of the DSF on the NESS is similar
to the one encountered for the ground state of the Lieb-
Liniger model. There, the Fermi sea structure 9gg(4) =
O(A+ Ap)0(Ap — A) (with Ap the Fermi rapidity such that
k(+Ap) = +kp) leads to two fundamental types of the
particle-hole excitations [114]. The particle type describes
excitation in which a hole is created at the edge of the
Fermi sea and the particle is free to move. The hole type

S(k,w)

k/kr k/ kg

FIG. 2. Density plot of the DSF (in unit of n/wy) computed on
the NESS (left) and on the ground state (right) of a gas, with the
density n = nygss and the coupling strength ¢ = 10 (kp = 7n,
wp = k%). The NESS is obtained by joining a left gas with
T, =1, np =1 and a right gas with Tp =1, np = 0.1. The
coupling strength ¢ = 10 of both gases is the same (density
nness = 0.54). In the NESS and for k > 0, the DSF is divergent
close to the particle excitations ., (k) ~ k*/2m, and it has a zero
in proximity of the hole edge w_ (k) ~ —k?/2m;. For a negative k,
the situation is reversed. In the ground state, the DSF has a pole
(zero) around the particle (hole) edge w. (k) ~ v |k| £ k*/2m
instead, see for example [25,113].

corresponds to a reversed situation when the particle position
is fixed to the edge of the Fermi sea and the hole instead is free
to move. The form factors of the density operator are singular
for both types of excitations, which leads to well-known
singularities of the correlation functions as universally
described by the nonlinear Luttinger liquid [20,24,25].
Here, we face a similar situation, see Figs. 2 and 4.
However, there are differences. First, there is only one
discontinuity, at 1,. Second, the NESS distribution is

S(k = +kp /5, w) S(k = +kp/2,w)

15

2
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L. 1
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w/wp w/wre
FIG. 3. DSF (9) of the NESS (red line) and on a thermal state

with T = 1, n = nygss, and ¢ = 4. Plots on top display data with
k = k. and the ones on the bottom with k = —k (kp = zn). The
NESS is the same as the one computed in Fig. 2.
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FIG. 4. The distribution function 9(4) for the ground state (top)
and the NESS state (bottom). For a fixed momentum £, a particle-
hole excitation of the ground state can be created only for a finite
interval of energies w, (k) — w_(k). The edge excitations corre-
spond to a configuration where either particle or hole is right at
the edge of the Fermi sea Ar. On the contrary, over the NESS
state, particle-hole pairs of arbitrary energy can be created;
however, there are again two edge modes where either particle
or hole is placed at the discontinuity A.

asymmetric, which implies that S(k, @) is not a symmetric
function of &, see Fig. 2. The third difference is related to the
nature of the excitations. The ground state Fermi sea is
completely filled up to A and then empty. This means that
the hole, which for the particle excitations should be placed at
the edge, can be only placed just before the edge. For the
NESS, the situation is different, since the distribution
function is neither 1 or O in the vicinity of 4. Therefore,
the hole can be created on both sides of the discontinuity. The
situation is analogous to the hole type excitation where a
particle can also be placed on both sides of the discontinuity.
Therefore, the particle and hole excitations are themselves
formed by two different microscopic configurations with the
same dispersion relations.

The dispersion relations for the particle and hole exci-
tations can be derived with a standard thermodynamic
Bethe ansatz techniques [104]. At small k, they read

k? K'(4
O)i(k)::tz—rrl()+0(k3), my = ( O).

While the ground state of quantum 1D liquids supports
sound waves excitations, excitations in the NESS around
the edge are massive since the velocity »(1) vanishes at 4.

The singularities in the DSF appear when the energy w is
close to w. (k). Explicitly, formula (9), in the vicinity of
either singularity, is

(k)

o — w_(k) ’ (1

S(k, ) = Si(k)‘ oo (B

with the exponent y(k) and the momentum dependent
prefactors Sy (k) given in their leading order in k by

u(k) = ~209F (2y). (12)
5. (k) = %W(&Lw T 9400)) (1 = 94 (20).
S_(k) = %W&(zoxz 19, 00) + 8x())). (13)

The sum of the distribution functions in S (k) reflects the
aforementioned fact that each mode is made of two micro-
scopic types of configurations. The singularity itself is
controlled by the exponent (k). For the NESS state of
Fig. 1, it results in a divergence along the particle excitations
at positive k and along hole excitations for negative k.

Spatial correlations.—The presence of a discontinuity in
the occupation number 9(4) has also important conse-
quences on the structure of the spatial density-density
correlations. Static correlations in real space S(x,0) can
be expanded as a sum over particle-hole form factors,
weighted by the momentum phase e/({(P)=k(M)*  For a
NESS state at large x, the sum over particle-hole position
accumulates around the discontinuity, and this leads to a
power law decay of the correlations as

S(x,O)N1

5+ O(e7Prrb), x> nyls

”2NEss
(14)

The amplitude A is given by the matrix element of a single
particle-hole excitation close to the discontinuity Ay, namely
lim,, . | (NESS|p|NESS, h — p)|> = K'(49)%, see [110].
We obtain A, = (k'(1y)A8)?/2. Notice that, this expression
gives back the Luttinger liquid parameter K = (K'(+15))?
when the state is the ground state, see [104,107,109]. This
shows that the NESS has much longer range density-density
correlations compared to the left and right state, where
the decay is instead exponential at large distances. A
similar behavior was observed in the NESS states realized
in d-dimensional free theories [115] and in trap-release
experiments with hard-core bosons [42,116].

Beyond small k.—Until now, we have been considering
the structure of singularities at small momenta. Comparing
the obtained results with the NL-LL theory we can
conjecture a formula for the edge exponents at an arbitrary
k. The NL-LL theory predicts the threshold exponents of
the ground state of the Lieb-Liniger model to be 1 —
pr(k) = pg(k) with  ppg)(k) = (1 + F(£4r))*, where
L(R) are contributions coming from the left and the right

217206-4



PHYSICAL REVIEW LETTERS 120, 217206 (2018)

Fermi edges, both of height 1. The presence of a nontrivial
9(4) (not simply equal to 0 or 1) affects the scattering phase
as F(4) - 9(A)F(A), and we conjecture the threshold
exponents for the NESS to be

pu(k) = 1= (14 AIF(Ay))>. (15)

at any k. In the small momentum limit, the backflow is
small and we recover the threshold exponent (12). In order
to prove such a statement, one would need to formulate a
NL-LL field theory for the excitations around the NESS,
which is currently not known. Certain progresses in this
direction recently reported on inhomogenous Luttinger
liquids [99,117].

Conclusions.—We have shown that the bipartite non-
equilibrium protocol leads to excited states with unusual
properties. They have a finite energy density and entropy
like thermal states, but despite that, they display correla-
tions that are typical of the ground state; i.e., they exhibit
edge singularities and quasilong-range order. We consid-
ered here an integrable model, but a NESS has been shown
to exist for any model described by a conformal field theory
[49,71] or strongly interacting theories in higher dimen-
sions [118]. Moreover, a NESS should appear at inter-
mediate time scales for any interacting theory sufficiently
close to an critical [74,119] or integrable point [85]. We
believe that our results pave the way towards a field
theoretical, universal description of the NESS, similarly
to the nonlinear Luttinger Liquid theory for the ground state
[24] and general zero-entropy states [120].
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