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We demonstrate that two-dimensional chiral superconductors on curved surfaces spontaneously develop
magnetic flux. This geometric Meissner effect provides an unequivocal signature of chiral super-
conductivity, which could be observed in layered materials under stress. We also employ the effect to
explain some puzzling questions related to the location of zero-energy Majorana modes.
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Introduction.—Although it has been known for quite a
while that all (gapped) superconductors are topologically
ordered (see e.g., [1]), the chiral ones are particularly
fascinating. Most interesting are the odd-pairing chiral
superconductors (ySCs) in two spatial dimensions (2d),
and the layered ones in 3d, such as chiral p-wave, f-wave,
etc.. Typically, these states support vortices that are non-
Abelian anyons [2-5].

There are several candidate materials for chiral pairing and
most of these are layered. Examples range from UPt; [6],
Li,P;B [7], and Sr,RuO, [8,9] for odd pairing, to SrPtAs
[10,11] and doped graphene [12—16] for even pairing.

Most of the experimental evidence for ySC is by
observation of spontaneous breaking of time-reversal
invariance, but the experiments are inconclusive and it is
essential to find an unequivocal signature for ySCs, similar
to the Meissner effect in ordinary SCs. Since the essence of
the Meissner effect is the gap to flux excitations, one can
think of a SC as a flux insulator. Ordinary charge insulators
can be either trivial or topological, so it is natural to ask
whether the proper description of topological SCs would be
in terms of topological flux insulators.

In this Letter, we show that a 2d ySC will spontaneously
develop a magnetic flux when put on a curved surface.
Conversely, if a spontaneously generated magnetic field is
observed, the very fact that one of the two directions
perpendicular to the surface is picked out clearly shows that
there are supercurrents breaking chirality. We thus submit
that the geometric Meissner effect, i.e., the spontaneous
magnetic field due to curvature, will be a smoking-gun
signature of a layered ySC.

To understand this effect, it is useful to recall that in addition
to the Hall conductivity, quantum Hall (QH) liquids are
characterized by their response to the curvature of the 2d
surface on which they reside. This effect, which was first
described by Wen and Zee [17], comes about because an
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electron in a QH liquid carries a “spin” due to the cyclotron
motion (often referred to as orbital spin), and thus acquires a
Berry phase when moving on a curved surface. When
completing a closed orbit on a surface with constant
Gaussian curvature K and magnetic field B, it will pick up
aphase ~Area x (eB + sK), where s is the orbital spin. Since
the QH liquids form at high magnetic fields, the contribution
from curvature cannot be detected in an experiment.

In a ySC, the situation is very different. The conditions
for detecting the magnetic flux response to curvature is
much more favorable. Because there is no background flux,
our results show that the geometric Meissner effect could
be detected in a bent layered ySC using a sensitive
superconducting quantum interference device (SQUID).

After a short review of the effective response theories for
charge and flux insulators, we identify the origin of the
geometric Meissner response and use this finding to resolve
some puzzling questions related to the location of zero-
energy Majorana edge modes (Majorinos) and design a
geometry-driven tunneling current in a weak link. Finally,
we discuss possible experiments to detect our theoretical
predictions.

Response action for 2d U(1) insulators.—Insulators are
systems with a conserved U(1) charge and a gap to charged
bulk excitations, implying that the response action is local.
In the standard case of the U(1) electromagnetic gauge
symmetry related to electric-charge conservation, it is
known that insulators can be trivial or topological. The
simplest trivial insulator is just empty space, while others
differ by having a more complicated electromagnetic
response, with material-dependent parameters that can be
continuously changed to those of the vacuum. A nontrivial,
or topological, insulator cannot be continuously changed
into the vacuum, and the effective action typically has terms
with quantized coefficients that can change only at phase
transitions related to the closing of the energy gap. Typical
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examples in 2d are Chern insulators and integer QH
systems. We first consider the known case of an electric
insulator to exploit the analogy with flux insulators, i.e.,
superconductors, to which we then turn our attention.

(i) Charge insulators. Here, the effective action W[A,]
encodes current correlation functions and the response to
external electromagnetic fields A,; i.e., the current expect-
ation value is (j,) = 226W/5A,. The QH response to a
slowly varying current is encoded in the Chern-Simons
(CS) term

W[Aﬂ] = Wes [A/t] +o
2
- % didxe" A DA, + - (1)
which not only implies a Hall conductivity 6;; = ve?/h, but
also relates the total charge N, of aregion S to the total flux
N, through it. Changing the number of flux quanta N by
ON P will, according to (1), lead to a change 6N 0= V6N P in
the number of unit charges N,. If the electromagnetic field
is the only long-distance effect, which is the case in a
pristine QH experiment, this relation also holds for the total
values,

Note that the sign of v defines an orientation on the 2d
surface and thus breaks chiral symmetry.

We now turn to the main topic of this paper—the effect
of geometry, i.e., how the system depends on a spatial
(possibly time-dependent) metric g;;. It was shown in
Ref. [18] that the long-wavelength part of the geometric
response is captured by the Wen-Zee term [17]

WyzlA,. @,] = e’;iH / didxe00,0,A,.  (3)
where @, (which depends on g;;) is a potential for the
Gauss curvature K, viz. €/0,w; = \/gK, and kgy defines
the long wavelength charge response to the curvature. Just
as the CS term, the Wen-Zee term specifies an orientation
given by the sign of kg, so it can again only be present if
there is a preferred orientation. For closed surfaces, the
Wen-Zee term gives rise to a shift in the relation (2),

NQ:UN¢+K'QH)(, (4)

where y = f sz\/g_]K /2n is the Euler characteristic of S.
Since Ny, N, and y are integers, and v is rational, kpp
must be quantized.

(i1) Flux insulators. We now switch to the systems of
interest—the ySCs. In the spirit of Ref. [1], we will use a
toy model where the electromagnetic field is mimicked by
2d Maxwell theory. In 2d, conservation of magnetic flux
(which is a consequence of Maxwell’s equations)

0= 8, /b = 3 0,%7F,, (5)
amounts to having a conserved U(1) charge. Since a SC is a
flux insulator, i.e., has a gap to flux excitations, it is natural
to consider the effective action W[b,], where the external
gauge field b, is coupled to ji ., so that (i) = W /&b,
is the expectation value of flux current. This coupling can
be interpreted in two different ways, as seen by

/ dtd*xji b, = / dtd*xA,e"°0,b,
- / didxjiA, (6)

which identifies ¢*°0,b,, as the supercurrent.

Ordinary SCs have chiral symmetry and are trivial flux
insulators. However, ySCs could also be topologically
nontrivial and we now focus on the response to curvature
given by the SC version of the Wen-Zee term

kc®Po
Wz [by s wﬂ} =

/ dtd*xe"°w,0,b,,  (7)

T

defined by the single parameter k¢, which, just as k¢, has
to be quantized.

Equation (7) encodes the geometric Meissner response,
which relates the total flux through a region S to its total
curvature y,

No = kcx- (8)

Ng denotes flux in units of the superconducting flux
quantum @, = i/2e. Changing the sign of k. defines
the direction of the magnetic field and it thus defines an
orientation i.e., a chirality. Thus, only a chiral system can
have a nonzero k..

To see why we expect a nontrivial topological response,
e.g. kc #0, we consider a very thin film with small
curvature, ie. K& <1, where & is the size of the
Cooper pair. Then, the orbital spin of the Cooper pair
(i.e., the spin of the pair due to orbital motion) is well
defined and perpendicular to the surface. If the orbital spin
of the pairs all have the same chirality the pair will respond
to curvature in a similar way as to a magnetic field. In
addition to the Aharanov-Bohm phase due to the charge 2e
encircling the magnetic flux, the pair will also pick up the
Berry phase 2zyl, where [ is the orbital spin of the pair (we
take / > 0 to denote right-handed rotation.) This means that
the pair effectively responds to the combination of mag-
netic field and Gauss curvature, so that the Meissner effect
will amount to expelling the combination B + [K®,/4x,
rather than the magnetic field itself.

It is illuminating to see how the geometric Meissner
effect emerges from a simple model, so we outline a
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derivation. The spatial part of the Wen-Zee response can be
obtained from the Ginzburg-Landau free energy for a
vector order parameter ¢ describing p-wave paired spinless
fermions. Mutatis mutandis, this model also applies to the
spinfull case with half-vortices as described in Ref. [4]. The
order parameter ¢ can be written as

@ = \[pre (e +iey) +/p_e-(e) — i), (9)
where ¢, and &, are orthonormal basis vectors, and p_ and

6. are densities and phases of the two chiral components,
respectively. We assume a Ginzburg-Landau free energy

r= [ s "9 )DL vien). (10)
2m ! J 2/40

where m is a mass, i is the magnetic permeability, B =
1/\/9¢79;A; is the magnetic field scalar, iD; = (i0;—
2¢A;/h), and roman indices denote spatial coordinates.
We take a potential V(|¢|), for which there is a mean-field
solution with p=p, #0 and p_ = 0. Such a potential
must exist for the flat geometry in order to at all have a ySC.
By adiabatic continuity, such a solution will exist also for
(at least weak) deformations of the surface, and since k. is
quantized, it will remain fixed as long as there is no phase
transition.
To lowest order we then get the London free energy,

P . 2
e [ ewi(22(50, 25250+ 2.

2uo

The square of the vector within the parenthesis is deter-
mined by the metric g, and @ comes from the derivatives of
the basis vectors ¢;. Varying F; gives

_ D

(A2A-1)B=-—K, (12)

4z

where 1; = \/m/(32puge?) is the London length and A is
the Laplace operator defined by the metric g. For a region
with a linear size much larger than 4; , we can average both
sides to get Eq. (8) with k- = 1. Chiral pairing in the /th
channel would give k- = . Note that this simple derivation
does not give any flux-Hall response (see Ref. [19]) term in
the effective action.

Thought experiments.—Some apparently puzzling issues
can be understood in terms of the geometric Meissner
effect.

(i) Where are the Majorino edge modes? A »SC
generically has gapless edge modes in the thermodynamic
limit, but odd pairing ySCs can support zero-energy
Majorana edge modes (Majorinos), i.e., an exact zero-
energy mode for finite edge length (up to exponential
corrections in system size).

For simple chiral p-wave SC models (such as in Ref. [2])
the zero-flux state on the cylinder supports edge Majorinos
and the state with a flux quantum through the cylinder has
no Majorinos. The opposite is true for the states on the
annulus. Assuming an adiabatic change from the annulus to
the cylinder, via a tipless cone, the SC should remain in its
ground state. That would mean that Majorinos are either
created or annihilated, which would imply a closing of the
bulk gap which, in turn, would contradict the assumption of
adiabaticity. In Ref. [20], we resolved this puzzle by
showing that there is a level crossing and that the final
state is not the ground state. We now show that this is easily
understood as a geometric Meissner effect.

Since the surface of a tipless cone is flat, one might think
that there would be no geometric Meissner effect. But Wy,
in (7) depends on w, not on K, and the line integrals [ @;dx’
are nontrivial. With k- = 1, the Wen-Zee term dictates that
this geometric monodromy will be canceled by a flux
through the hole of the cone. Going adiabatically from a
cylinder to a disc amounts to the spontaneous creation of a
flux, and the edge Majorinos will remain. To stay in the
ground state by an avoided crossing would require the
tunneling of a vortex across the SC, which is exponentially
suppressed in the system size.

Alternatively, one can interpolate between a cylinder and
an annulus by gradually lifting the inner edge of the
annulus to form part of a cylinder and an associated region
with total curvature [ aax\/gK = —2x. When the cylin-
drical region is longer than 4;, it follows from Eq. (12) that
there will be a full flux quantum through the curved region.
Since flux is conserved, it has to enter somewhere and if the
system is large, it must have come from the inner edge,
since tunneling from the outer edge is suppressed. This is
shown on the left side of Fig. 1, where the surface is
embedded in 3d space and the strength and sign of the 2d
flux is illustrated by a 3d field configuration (this configu-
ration would be qualitatively correct for layered 3d films,
but only if they are much thicker than 4; ). The flux lines are
closing through the hole of the newly formed cylinder, such

FIG. 1.

Left: lifting the inner circle of an annulus to form a
cylinder. Right: flattening the lower end of a cylinder to form an
annulus. (Red indicates Majorino modes.)

217002-3



PHYSICAL REVIEW LETTERS 120, 217002 (2018)

that the cylinder edge encircles a flux quantum while the
annulus edge does not. Neither of them support edge
Majorinos, just as the annulus we started from. If we do
the opposite, i.e., flatten one end of a cylinder, we end up on
the state shown in the right side of Fig. 1, that does support
edge Majorinos.

Another perplexing question is what happens to the edge
Majorino at the bottom of a cylinder, if the top is smoothly
capped. The resulting state has only one edge, so there
should be no Majorinos. But how can the bottom Majorino
be removed by just a local change at the other end? Again,
we can understand what happens by evoking the geometric
Meissner effect. When we slowly deform an end of the
cylinder to a half sphere, we create curvature and thus flux.
If the cylinder is long enough, the flux must escape through
the hole that we are about to close. In the limit of a very
small hole we do not get a homogeneous flux on the half
sphere, but a vortex, and thus a localized Majorino, as
illustrated on the left side of Fig. 2. If we instead start from
a sphere, and stretch one end out to form a cylinder, we end
up in the flux configuration shown in the middle of Fig. 2—
a state with no Majorinos.

(i) Closed manifolds. If we close both ends of the
cylinder, as on the right in Fig. 2, vortices arise. We can
deform this geometry by shrinking the cylindrical section to
zero to get a sphere. In this case, there is no symmetry to
give preferred locations to the vortices, but since vortices in
a type II superconductor repel, they would sit at antipodal
points to minimize energy. Picking a direction of the line
between them amounts to a necessary spontaneous break-
ing of rotational symmetry.

That a ySC on a sphere must have vorticity is an effect
analogous to the shift in the relation (4) between flux and
charge in QH liquids. Here, it means that the number of flux
quanta through a closed surface equals the integrated
curvature y.

(iii) The geometric Josephson effect. Figure 3 shows how
a cut cone can be formed by rolling up a segment cut from a
Corbino disc. Since the geometry is flat, the ground state of

\/

FIG. 2. Left: starting from a cylinder and closing one of the
holes gives a magnetic flux at the cap. Middle: starting from a
half-sphere and extending it, the flux points the opposite way, and
extends all over the surface. This is not the ground state of the
system due to the extended magnetic field lines. Right: as on the
left, but closing both holes. (Red indicates Majorino modes.)

the segment supports no flux, and neither does the partially
rolled up configuration shown to the right. But the cut cone,
obtained by gluing the disc along the dotted line, does
support edge currents. What happens is that when the edges
come close to each other, the system should be thought of
as a superconductor with a weak link that can maintain a
phase difference. As seen from Eq. (11), @ enters just as an
electromagnetic vector potential giving a geometric version
of Josephson effect.

(iv) The geometric flux pump. Laughlin notion of flux
insertion in a Corbino geometry [21] was historically very
important for understanding the integer quantization of the
Hall conductance. In the QH case, a unit electric charge is
pumped from one edge to the other by inserting a flux, and
in the present context there is an analogous effect, which
shows that the Wen-Zee term must be quantized. The
geometric flux pump is operated by adiabatically trans-
forming a cylinder into an annulus and then back to the
cylinder by pulling one of the edges through the other,
which has the net effect of turning the cylinder inside out.
In this process, the initial and final states have the same
Hamiltonian, so if it is adiabatic, the final state must be an
energy eigenstate below the bulk gap. This implies that
there is an integer number of superconducting flux quanta
through the hole of the cylinder, which means that k- must
be quantized as an integer.

Experimental realizations.—Can the geometric Meissner
effect be observed in the laboratory? Given a candidate
xSC, one can imagine several different experiments,
depending on the material to be tested. Interesting candi-
dates are SrRuQ, and bilayer graphene intercalated with
Ca, and to probe the symmetry of their order parameter one
needs to grow them on a concave or convex substrate. For
bilayers, it is required that the substrate on which the
graphene is deposited must be nonsuperconducting, other-
wise it will short-circuit the graphene, and destroy the
geometric Meissner effect. Therefore, one could also
conceive to suspend it on top of nanopillars, as already
experimentally realized. However, here it would be con-
venient to have the nanopillars forming a circular array of a
radius R, instead of a regular lattice, as in Ref. [22]. If the
sample is much larger than the diameter of the circle, and
can be anchored outside, we expect a downward curvature
in the inner region of the circle, simply due to gravity.
Another possibility would be to set up a standing wave in a

FIG. 3. Folding a »SC and creating a monodromy of the
curvature form, results in a phase difference, and thus a current.
The red arrows indicate the tunneling current.
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suspended sample and detect the ac electromagnetic
response.

If the sample is a 2d sheet thinner than the London length
Ar, the screening of charges and fluxes changes from
exponential to a power law at large distances. Since we still
have Meissner-like decay of the magnetic field, we would
expect the relation (12) still to hold for regions with a radius
r > A;, with corrections of order 1/r.

Comparing Eqgs. (4) and (8), we see that in the QH case
the geometric contribution to the flux is a small correction
to the large dominant term due to the background magnetic
field, while in the ySC case the geometric term stands
alone.

The geometric Meissner effect scales proportional to the
maximum bond-length stretching and inversely propor-
tional to A2. With a maximum allowed bond-length
stretching of 1% and A; =1 uym, the magnetic field
strength is of the order of 10 yT. The best SQUIDs can
detect fields as small as a pT; hence, such a field should
easily be detectable.

We hope that our work will motivate further experiments
on curved ySC candidates, and contribute to the unveiling
of this elusive state of matter in an unequivocal and
definitive way.

We thank O. Golan, D. Mross, and S. Moroz for helpful
discussions and and Soren Holst for all the nice hand-drawn
pictures. The work by A.Q. and C.M.S. is part of the
D-ITP consortium, a program of the Netherlands Organisation
for Scientific Research (NWO) that is funded by the Dutch
Ministry of Education, Culture and Science (OCW).

[1] T. Hansson, V. Oganesyan, and S. Sondhi, Ann. Phys.
(Amsterdam) 313, 497 (2004).

[2] N. Read and D. Green, Phys. Rev. B 61, 10267
(2000).

[3] M. Greiter, X. Wen, and F. Wilczek, Nucl. Phys. B374, 567
(1992).

[4] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).

[5] A. Stern, F. von Oppen, and E. Mariani, Phys. Rev. B 70,
205338 (2004).

[6] H. Tou, Y. Kitaoka, K. Ishida, K. Asayama, N. Kimura, Y.
Onuki, E. Yamamoto, Y. Haga, and K. Maezawa, Phys. Rev.
Lett. 80, 3129 (1998).

[7] M. Nishiyama, Y. Inada, and G.-q. Zheng, Phys. Rev. Lett.
98, 047002 (2007).

[8] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T.
Fujita, J. Bednorz, and F. Lichtenberg, Nature (London)
372, 532 (1994).

[9] A.P. Mackenzie, T. Scaffidi, C. W. Hicks, and Y. Maeno,
arXiv:1706.01942.

[10] M. H. Fischer, T. Neupert, C. Platt, A.P. Schnyder, W.
Hanke, J. Goryo, R. Thomale, and M. Sigrist, Phys. Rev. B
89, 020509 (2014).

[11] Y. Nishikubo, K. Kudo, and M. Nohara, J. Phys. Soc. Jpn.
80, 055002 (2011).

[12] M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R.
Thomale, Phys. Rev. B 86, 020507 (2012).

[13] A.M. Black-Schaffer and C. Honerkamp, J. Phys. Condens.
Matter 26, 423201 (2014).

[14] R. Nandkishore, L. S. Levitov, and A.V. Chubukov, Nat.
Phys. 8, 158 (2012).

[15] A. Fedorov, N. Verbitskiy, D. Haberer, C. Struzzi,
L. Petaccia, D. Usachov, O. Vilkov, D. Vyalikh, J. Fink,
M. Knupfer, B. Biichner, and A. Griineis, Nat. Commun. 5,
3257 (2014).

[16] S. Ichinokura, K. Sugawara, A. Takayama, T. Takahashi,
and S. Hasegawa, ACS Nano 10, 2761 (2016).

[17] X.G. Wen and A. Zee, Phys. Rev. Lett. 69, 953
(1992).

[18] C. Hoyos and D.T. Son, Phys. Rev. Lett. 108, 066805
(2012).

[19] S. Moroz, A. Prem, V. Gurarie, and L. Radzihovsky, Phys.
Rev. B 95, 014508 (2017).

[20] A. Quelle, C. M. Smith, T. Kvorning, and T. H. Hansson,
Phys. Rev. B 94, 125137 (2016).

[21] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

[22] M. A. Otte, V. Solis-Tinoco, P. Prieto, X. Borrisé, L. M.
Lechuga, M. U. Gonzilez, and B. Sepulveda, Small 11,
4201 (2015).

217002-5


https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1016/0550-3213(92)90401-V
https://doi.org/10.1016/0550-3213(92)90401-V
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevB.70.205338
https://doi.org/10.1103/PhysRevB.70.205338
https://doi.org/10.1103/PhysRevLett.80.3129
https://doi.org/10.1103/PhysRevLett.80.3129
https://doi.org/10.1103/PhysRevLett.98.047002
https://doi.org/10.1103/PhysRevLett.98.047002
https://doi.org/10.1038/372532a0
https://doi.org/10.1038/372532a0
http://arXiv.org/abs/1706.01942
https://doi.org/10.1103/PhysRevB.89.020509
https://doi.org/10.1103/PhysRevB.89.020509
https://doi.org/10.1143/JPSJ.80.055002
https://doi.org/10.1143/JPSJ.80.055002
https://doi.org/10.1103/PhysRevB.86.020507
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1038/nphys2208
https://doi.org/10.1038/nphys2208
https://doi.org/10.1038/ncomms4257
https://doi.org/10.1038/ncomms4257
https://doi.org/10.1021/acsnano.5b07848
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevLett.108.066805
https://doi.org/10.1103/PhysRevLett.108.066805
https://doi.org/10.1103/PhysRevB.95.014508
https://doi.org/10.1103/PhysRevB.95.014508
https://doi.org/10.1103/PhysRevB.94.125137
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1002/smll.201500175
https://doi.org/10.1002/smll.201500175

