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Curvature Elasticity of the Electric Double Layer
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Mean-field electrostatics is used to calculate the bending moduli of an electric double layer for fixed
surface charge density of a macroion in a symmetric 1: 1 electrolyte. The resulting expressions for bending
stiffness, Gaussian modulus, and spontaneous curvature refer to a general underlying equation of state of
the electrolyte, subject to a local density approximation and the absence of dipole and higher-order fields.
We present results for selected applications: the lattice-gas Poisson-Fermi model with and without
asymmetric ion sizes, and the Poisson-Carnahan-Starling model.
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Electrolytes neutralize the charge carried by embedded
macroions through the formation of a diffuse ion cloud,
enriched in counterions and depleted in coions. This
composite structure—referred to as the electric double
layer (EDL)—is ubiquitous in cellular biology and impacts
a multitude of technological applications such as super-
capacitors for energy storage [1], capacitive deionization
[2], transport in nanofluidics [3], drug delivery, and medical
imaging [4]. The classical mean-field model of the EDL is
known as Poisson-Boltzmann (PB) theory; refined models
account for ion size and structure, solvent properties, ion
correlations, and specific ion-ion interactions [5-7].
Most of these focus on the planar geometry. However,
electrified interfaces are often curved or undergo bending
fluctuations. Among the numerous examples are nano-
porous electrodes for supercapacitor applications [8],
charged microemulsions [9], biomembrane remodeling
by proteins and peptides [10,11], complex formation of
curved macroions such as cationic membranes and DNA
[12], and fluctuation-induced topological phase transitions
of model membranes [13,14].

The dependence of EDL structure and energy on
curvature can be described in the limit of small bending
by a set of curvature elastic constants. In two seminal
papers, Lekkerkerker [15,16] has employed two different
approaches (the first is a charging method and the second
the determination of the lateral pressure profile) to calculate
the contribution of the EDL to the curvature elastic
constants based on the classical PB model. Subsequent
studies have generalized these results to account—still
within the PB framework—for curvature-dependent surface
charges, modifications in the dielectric constant, and
confined geometries [17-19]. Yet, attempts to compute
the curvature elastic constants for models that go beyond
the PB level are largely missing.

In the present work we apply the charging method to a
class of models that, unlike the classical PB model, include
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a nonideal mixing contribution of the mobile ions. Our
mean-field approach is used to obtain the curvature elastic
constants directly from the underlying equation of state of
the electrolyte. We present a general formalism and discuss
three examples: the lattice-gas PB approach (which, fol-
lowing a suggestion by Kornyshev [20], we refer to as the
Poisson-Fermi model) with and without equal sizes of the
mobile cations and anions, and the Poisson-Carnahan-
Starling model that employs the Carnahan-Starling equa-
tion of state for size-equal ions.

Consider a single macroion of surface charge density o
immersed in a symmetric 1:1 electrolyte of bulk ion
concentration 2¢ /v, where v is the effective volume per
salt ion and ¢ the bulk volume fraction of each individual
ion type. We describe the EDL that builds up in the
electrolyte outside the macroion by a mean-field self-
consistency relation

PV2¥ = f(P)f'(P) (1)

for the dimensionless electrostatic potential ¥ = e®/kT,
where @ denotes the electrostatic potential, e the elemen-
tary charge, kp Boltzmann’s constant, 7 the absolute
temperature, and [ is a characteristic length. The function
F(¥) [with its derivative f'(¥) = df/d¥] depends on the
underlying equation of state of the electrolyte and can be
calculated from the right-hand side of Eq. (1) through

FO¥) =+ |2 / dVF(D) (). 2)
0

We do not consider cases where f depends explicitly on
any spatial derivatives of W—this effectively excludes
models beyond the local density approximation and
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confines us to ions carrying simple point charges.
Examples that go beyond Eq. (1) include higher-order
Poisson-Boltzmann equations [21,22] and the dipolar
Poisson-Boltzmann approach [23]. Nevertheless, Eq. (1)
embodies a range of frequently used models for electrolytes
with varying ion sizes, shapes, and nonelectrostatic ion-ion
interactions.

The free energy of the EDL can be calculated based
on integrating the surface potential ® as a function of the
surface charge density o or, equivalently, integrating the
dimensionless surface potential ¥ as a function of the scaled
surface charge density s = vo/(le),

Zdazm@ it /d/d ¥, 0

The integration [, da runs over the macroion surface. When
that surface is only weakly curved we can curvature expand
the free energy and compare the resulting expression with
Helfrich’s free energy [24]

F Fy « =
A :KO""E(Q +e)? —kegler + €2) +Reyor, (4)

measured per unit area A, where Fj, is the free energy for
flat geometry, and c; and ¢, are the two principal curvatures
at a given point on the macroion surface. We calculate the
bending stiffness x, Gaussian modulus x, and spontaneous
curvature cy. Following Lekkerkerker [15], we consider
Eq. (1) for spherical (n =2) and cylindrical (n = 1)

symmetry
¥
12
( dr? +

and express the radial distance r = 1/c¢ + [x in terms of
a dimensionless coordinate x so that the macroion surface
is located at x = 0. Next, we expand ¥(x) = ¥y(x) +
cl¥,(x) + ¢*I?¥,(x) up to quadratic order in curvature:
¢y — ¢ = ¢, = 0 for cylindrical and ¢; = ¢, = ¢ for spheri-
cal geometry. The result is a set of three ordinary differential
equations,

nd¥

rar

):ﬂ%ﬂ% (5)

o = 11",

lIJ2
W = (£ = n®) + [F1) S+ ¥y (6)

¥ = [ff'"Y —n¥,.

where here and below we use the notation f = f(%¥),
[ =), [T =1+ =) [ff]"=
3F "+ ff", and f" = f"(%,). Note W, =d¥,/dx
and analogously for W} (x), W,(x), and higher derivatives.

Because the macroion is isolated, we demand W, (x) =
¥, (x) =¥,(x) =0 for x > co. In this case, the first
integration of Eq. (6) can be carried out,

1
lP/l = _f/‘Pl —n?,

1112 /
¥, = —f"¥, —f"71+n<]%1— 1)\111

¥y
I n*I* n(l-n) I(¥)
a2 p A
Tt AT Ty [d 7

where we define 1 = I(¥y) = [,° d¥f(¥). For a fixed
(scaled) surface charge density s at the macroion surface
(at x = 0) the boundary conditions ¥},(0) + s = ¥/ (0) =
¥, (0) = 0 must be fulfilled. When applied to x = 0, Eq. (7)
yields the surface potential contributions explicitly as
functions of s

I
Yo(0) =f7'(s).  Wi(0)=-n|— ’
0(0) = /7'(s) 1(0) n[ff’]%(o)f“(s)
21 d [P
g oy L4 (1°
2(0) 2 [ ff d¥, (ff/>L’0(0)f“(S>
¥
1 1(¥)
_ — P~ .
0 Wo(0)=/""(s)

Note that f~!(s) denotes the inverse function of f so that
f(f7'(s)) = s. The curvature contributions to the surface
potential, ¥, (0) and ¥, (0), initially depend on ¥ (0)—they
acquire their dependence on s through the relation
W,(0) = f~!(s). We use the surface potential contributions
Wo(0) = Wo(0;5), ¥,(0) =W(0;5,n), and W¥»(0)=
W¥,(0;5,n) in Eq. (8) to determine the free energy F via
the charging process specified in Eq. (3),

v ]f; - = £ / ds[¥y(0) + cI¥(0) + 2%, (0)]. (9)

0

Equation (9) is compared with Eq. (4), both for cylindrical
geometry (n=1), where F/AkzT=F,/AkgT —xcoc +
kc?/2, and for spherical geometry (n=2), where
F/AkyT = Fo/AkgT — 2xcoc + (2k + k)c?. This results
in expressions for the bending stiffness «x, Gaussian
modulus &, spontaneous curvature ¢, and free energy at
flat geometry F|,
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AkBTy/dsf 1(3). (10)
0

Equation (10)—the major result of the present work—
predicts the bending properties emerging from the self-
consistency relation in Eq. (1) at any fixed surface charge
density. The only input is the function f (with its derivative
f" and integral I). Next, we present applications and relate f
to the underlying equation of state.

Classical PB theory considers pointlike ions with ideal
mixing properties in an electrolyte of Debye screening length
Ip =1/\/2¢, and Bjerrum length [z =v/(4nl?). The
classical PB equation, /2 V?¥ = sinh ¥, implies f(¥) =
2(1/1p)sinh(¥/2) and thus f'(¥) = (I/lp)cosh(¥/2),
1(¥)=8(1/Ip)sinh?>(¥/4), and f~'(s)="2arsinh(sl,/2[).
Using these in Eq. (10) results in

1
& -y [deins
kBT_ﬂ'lB

2

I+q

Kk Ip (g-1)(g+2)
kgT 2zly q(g+1)

z—1

Kcy ln(%)

kB—T nlp

Fy 1—g+ parsinhp
' AkpT

(11)

ﬂlBlD

with g=+/1+p?> and p=slp/(2l) = 2xlglpo/e.
Equation (11) coincides with Lekkerkerker’s results [15,16].

An approximate method to account for the nonvanishing
volume v of the mobile salt ions is based on the mixing
properties of a lattice-gas, which leads to the Poisson-Fermi
equation [20,25],

2¢hy sinh ¥

PVY = ,
1+ 2¢y(cosh¥ — 1)

(12)

where we recall ¢ is the bulk volume fraction of cations
and anions each (with 0 < ¢ < 1/2). The specific case
¢o = 1/2 serves as a model for a solvent-free ionic liquid

[26]. The characteristic length [ = \/v/(4xlg) in Eq. (12)
reflects the volume v per lattice site: we identify that
volume with the ion volume. Equation (2) implies for the
Poisson-Fermi equation

f(¥) = +/2In[1 +2¢py(cosh® —1)],  (13)

T
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FIG. 1. «/kgT x v/ (a), —=k/k (b), and c,! (c), for ¢y = 0.5,
0.1,0.05, 0.01, 0.005, 0.001 (purple, red, blue, green, grey, black)
according to the Poisson-Fermi model [Eqgs. (12) and (13), solid
lines] and the classical PB limit [Eq. (11), dashed lines]. The
black dotted lines mark the large-s limit.

and thus f~'(s) = arcosh[l + (e/2 = 1)/(2¢,)]. With
that we plot in Fig. 1 scaled curvature elastic constants
for the Poisson-Fermi (solid lines) and the classical PB
model (dashed lines) for different choices of ¢,. The
limit |s] < 1 (referred to as Debye-Hiickel regime)

yields «ku/(ksTP) = 352/(164/243), —k/k =2/3, and

col = 2v/2¢py/3. In the opposite limit, |s| > 1, the diffuse
part of the EDL becomes irrelevant, leaving layers of
tightly condensed counterions that neutralize the surface
charges. With f(¥) = /2|¥| we obtain from Eq. (10)
xv/(kgTP) = 2|s|>/15, —k/kx = 1/4, and col = 5/(8]s]).
Hence, accounting for the nonvanishing ion volume v
turns the saturation of x (and similarly for k), predicted
in the PB limit, into growth ~|c|®, irrespective of ¢. As a
numerical illustration consider v = 1 nm?, [; = 1 nm, and
6/e = 1.7/nm?. This corresponds to s = \/4nlgvc/e = 6.
Because of s> 1, we find «/kzT = (8xzlg/15)0?
(6/e)’> = 23. Also, the nonvanishing ion volume tends
to suppress instability with respect to spherical curvature,
¢; = c,. To this end, note that Eq. (4) implies the stability
condition —k/x < 2. The PB limit predicts an instability
for any choice of ¢, given |s| is sufficiently large [see the
dashed lines in Fig. 1(b)]. In contrast, the Poisson-Fermi
model predicts an instability only for ¢ < 0.002, starting at
about s = 1.3.

Our method in Eq. (10) to calculate the curvature elastic
constants is viable even when an analytic expression for
f(¥) is not available. For example, consider a class of
mean-field models that assume the same particle size and
shape for the mobile cations and anions, with an additional
nonideality contribution added to the underlying equation
of state. The free energy of such a model can be expressed
as the sum of the energy stored in the electric field and
a mixing contribution corresponding to variations in the
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local volume fractions, ¢, and ¢, of the mobile cations and
anions, respectively,

2
i [0 0R 00 + ) + o+ )
Vv
o)~ G+ -20)d )| (19

where g,;(¢) = ¢In(¢p/py) — P + ¢y is the ideal mixing
free energy of the mobile ions and ¢(¢, + ¢,) is an
additional nonideal contribution. The latter appears in
the thermal equation of state of a homogeneous fluid with
N particles confined to a volume V at pressure P and
temperature T as PV/(NkgT) =1+ ¢ ($) — g9(d)/,
where ¢'(¢) denotes the derivative with respect to the
volume fraction ¢p = vN/V. Variation of Eq. (14) yields
the relations In(g,/¢hy) = —¥ — o (. + ba) + ¢ (24h9)
and In(¢h,/do) =¥ — ¢ (¢, + $.) + ¢ (24hy) that define
the equilibrium distributions ¢. = ¢.(¥) and ¢, =
¢,(¥). Generally, these are neither Boltzmann- nor
Fermi-distributed; we can express them using the function

h(¢) = ¢e??) and its inverse function h~' as

h='(h(2¢py) cosh ¥)

Peja = doe 2 cosh ¥

(15)

Using these in Poisson’s equation >V?¥ = ¢, — ¢,
yields the self-consistency relation [2V?¥ = tanh ¥ x
h='(h(2¢y) cosh ¥). With Eq. (2) this gives rise to

by
f(¥) =+ 2/d\iftanh\ith—l(h(zqso)coshlil). (16)
0

When the function A~' is available in analytic form,
f(¥) may be obtained explicitly. An example is the
Poisson-Fermi  formalism discussed above: g(¢) =
¢+ (1-@)In(1—¢). implying h(¢) = ¢/(1—¢) and
h=' = ¢(h) = h/(1 + h). Using these in Eq. (16), we
indeed recover Eq. (13). Another example is the
Carnahan-Starling equation of state, PV/(NkpT) =
(1+¢+¢*=¢°)/(1-¢)°, and thus g(¢) =¢*(4-3¢)/
(1—¢)?, as a model for an underlying hard-sphere fluid of
mobile ions (all of equal size). Here, an analytic expression
for h=! = ¢(h) is not available, but h~!' can be computed
numerically and then used to find f(¥) according to
Eq. (16). Figure 2 shows a comparison of predictions from
the Poisson-Carnahan-Starling (solid lines) and Poisson-
Fermi models (dashed lines). For a meaningful comparison
we adjusted the Poisson-Fermi model such that each
mobile ion is spherical and thus occupies a volume fraction
a = /6 of a cubic lattice site; this replaces Eq. (13) by

f=%£+/2aln[l +2¢y(cosh¥ — 1)/a]. The differences
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FIG. 2. «/kgT x v/ (a), —=k/k (b), and c,! (c), for ¢y = 0.1,
0.05, 0.01, 0.005, 0.001 (red, blue, green, grey, black) according
to the Poisson-Carnahan-Starling model (solid lines) and the
Poisson-Fermi model (dashed lines). The black dotted lines mark
the large-s limit. The Poisson-Fermi model is adjusted so that
each spherical ion occupies a volume fraction z/6 of a lattice site.

observed in Fig. 2 for intermediate s result from the higher
pressure predicted by the Carnahan-Starling equation of
state as compared to a lattice gas. For example, the former
has a second virial coefficient 4z/3 times larger than
the latter.

While Eq. (16) is restricted to ions of identical size
and shape, Maggs and Podgornik [27] have recently made
the connection of our function f(¥) to the underlying
electrolyte’s equation of state for the general case of
arbitrary ion sizes. Their analysis leads to f(¥) =

V2v AP(¥)/kgT, where AP is the excess osmotic pres-

sure of the ions. For example, classical PB theory implies
AP = 2¢y(cosh¥ — 1)kzT /v, and the symmetric lattice
gas gives rise to AP =In[l 4 2¢y(cosh¥ — 1)]kzT/v.
Reference [27] also discusses the extraction of the pressure
for two size-asymmetric models, the Flory-Huggins and the
Boublik-Mansoori-Carnahan-Starling-Leland equations of
state. Equation (10) of our present work thus allows for the
extraction of the curvature elastic constants according to
these models.

Our final example is an extension of the Poisson-Fermi
model, proposed by Han et al. [28], to anions and cations
with mismatching volumes v, = év and v, = v, respec-
tively, leading to the relation

[1—go(1+&—e")
(1= Epy)=!

for the function f(¥) defined in Eq. (1). Here, the
limiting behavior in the Debye-Hiickel regime, |s| < 1,
is kv/(kgTP) =3s2/(164/2¢3;), —k/k =2/3, col =

2/2¢.ss/3, with the effective volume fraction ¢ =
doll —po(1 +&)/2]/(1 = Egpy). The different ion sizes
introduce asymmetry for positive and negative o: for

T = gdoe + (17)

215502-4



PHYSICAL REVIEW LETTERS 120, 215502 (2018)

1,000 - —— —
F 77 f i
§ ‘
r P f ]
100 £ LA £
i £ 01 f F
10 ¢ o = s E
KV F 1 F E
kpTI3 r flo0 S 1 0
1E ., N L S 4
0.1 /'/ E g/,' //' =
00 L1l 1 2 il IR
]0.1 1 10 0.1 1 10
—s s
FIG. 3. «/kgT x v/? for ¢py = 0.1 (colored red) and ¢, = 0.3

(green), computed for & = 1 (dashed lines) and £ = 2% = 8 (solid
lines). The dotted black lines mark the large-s limit. Asymmetry
for negative (left diagram) and positive (right diagram) s emerges
from the mismatching ion volumes v, = &v and v, = v (solid
lines). Calculations are based on Eq. (17).

—s> 1 we obtain kv/(kgTP) =2|s|’£/15 and ¢yl =
5/(8¢|s|), and for s>1 we obtain kv/(kzTP) =
25°/15, and cyl=5/(8s). In both cases, —k/k=1/4.
Figure 3 shows kv/(kgTI?) with its asymmetry for s <
0 (left diagram) and s > O (right diagram) for £ = 23 = 8
(solid lines). For comparison, we also display the case
& =1 (dashed lines), for which x(s) = x(—s).

In summary, we have introduced a general method to
compute the curvature elastic moduli for a class of EDL
models described by Eq. (1) and exemplified our approach
based on both a lattice gas (with and without mismatching
ion sizes) and the Carnahan-Starling equation of state.
Given the recently stated general relationship between
Eq. (1) and the underlying equation of state of the bulk
electrolyte [27], it is now possible to include curvature
effects into the calculation of EDL free energies. Our
method leading to Eq. (10) can also be applied to electrodes
with fixed surface potential, extended to arbitrary position
of the neutral surface [17], used to calculate the curvature
dependence of the differential capacitance, and generalized
to incorporate nonelectrostatic, hydration-mediated ion-ion
and ion-surface interactions.
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