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Mean-field electrostatics is used to calculate the bending moduli of an electric double layer for fixed
surface charge density of a macroion in a symmetric 1∶1 electrolyte. The resulting expressions for bending
stiffness, Gaussian modulus, and spontaneous curvature refer to a general underlying equation of state of
the electrolyte, subject to a local density approximation and the absence of dipole and higher-order fields.
We present results for selected applications: the lattice-gas Poisson-Fermi model with and without
asymmetric ion sizes, and the Poisson-Carnahan-Starling model.
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Electrolytes neutralize the charge carried by embedded
macroions through the formation of a diffuse ion cloud,
enriched in counterions and depleted in coions. This
composite structure—referred to as the electric double
layer (EDL)—is ubiquitous in cellular biology and impacts
a multitude of technological applications such as super-
capacitors for energy storage [1], capacitive deionization
[2], transport in nanofluidics [3], drug delivery, and medical
imaging [4]. The classical mean-field model of the EDL is
known as Poisson-Boltzmann (PB) theory; refined models
account for ion size and structure, solvent properties, ion
correlations, and specific ion-ion interactions [5–7].
Most of these focus on the planar geometry. However,
electrified interfaces are often curved or undergo bending
fluctuations. Among the numerous examples are nano-
porous electrodes for supercapacitor applications [8],
charged microemulsions [9], biomembrane remodeling
by proteins and peptides [10,11], complex formation of
curved macroions such as cationic membranes and DNA
[12], and fluctuation-induced topological phase transitions
of model membranes [13,14].
The dependence of EDL structure and energy on

curvature can be described in the limit of small bending
by a set of curvature elastic constants. In two seminal
papers, Lekkerkerker [15,16] has employed two different
approaches (the first is a charging method and the second
the determination of the lateral pressure profile) to calculate
the contribution of the EDL to the curvature elastic
constants based on the classical PB model. Subsequent
studies have generalized these results to account—still
within the PB framework—for curvature-dependent surface
charges, modifications in the dielectric constant, and
confined geometries [17–19]. Yet, attempts to compute
the curvature elastic constants for models that go beyond
the PB level are largely missing.
In the present work we apply the charging method to a

class of models that, unlike the classical PB model, include

a nonideal mixing contribution of the mobile ions. Our
mean-field approach is used to obtain the curvature elastic
constants directly from the underlying equation of state of
the electrolyte. We present a general formalism and discuss
three examples: the lattice-gas PB approach (which, fol-
lowing a suggestion by Kornyshev [20], we refer to as the
Poisson-Fermi model) with and without equal sizes of the
mobile cations and anions, and the Poisson-Carnahan-
Starling model that employs the Carnahan-Starling equa-
tion of state for size-equal ions.
Consider a single macroion of surface charge density σ

immersed in a symmetric 1∶1 electrolyte of bulk ion
concentration 2ϕ0=ν, where ν is the effective volume per
salt ion and ϕ0 the bulk volume fraction of each individual
ion type. We describe the EDL that builds up in the
electrolyte outside the macroion by a mean-field self-
consistency relation

l2∇2Ψ ¼ fðΨÞf0ðΨÞ ð1Þ

for the dimensionless electrostatic potential Ψ ¼ eΦ=kBT,
where Φ denotes the electrostatic potential, e the elemen-
tary charge, kB Boltzmann’s constant, T the absolute
temperature, and l is a characteristic length. The function
fðΨÞ [with its derivative f0ðΨÞ ¼ df=dΨ] depends on the
underlying equation of state of the electrolyte and can be
calculated from the right-hand side of Eq. (1) through

fðΨÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ZΨ
0

dΨ̄fðΨ̄Þf0ðΨ̄Þ

vuuut : ð2Þ

We do not consider cases where f depends explicitly on
any spatial derivatives of Ψ—this effectively excludes
models beyond the local density approximation and
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confines us to ions carrying simple point charges.
Examples that go beyond Eq. (1) include higher-order
Poisson-Boltzmann equations [21,22] and the dipolar
Poisson-Boltzmann approach [23]. Nevertheless, Eq. (1)
embodies a range of frequently used models for electrolytes
with varying ion sizes, shapes, and nonelectrostatic ion-ion
interactions.
The free energy of the EDL can be calculated based

on integrating the surface potential Φ as a function of the
surface charge density σ or, equivalently, integrating the
dimensionless surface potential Ψ as a function of the scaled
surface charge density s ¼ νσ=ðleÞ,

F ¼
Z
A

da
Zσ
0

dσ̄Φðσ̄Þ ¼ kBT
l
ν

Z
A

da
Zs
0

ds̄ Ψðs̄Þ: ð3Þ

The integration
R
A da runs over the macroion surface. When

that surface is only weakly curved we can curvature expand
the free energy and compare the resulting expression with
Helfrich’s free energy [24]

F
A
¼ F0

A
þ κ

2
ðc1 þ c2Þ2 − κc0ðc1 þ c2Þ þ κ̄c1c2; ð4Þ

measured per unit area A, where F0 is the free energy for
flat geometry, and c1 and c2 are the two principal curvatures
at a given point on the macroion surface. We calculate the
bending stiffness κ, Gaussian modulus κ̄, and spontaneous
curvature c0. Following Lekkerkerker [15], we consider
Eq. (1) for spherical (n ¼ 2) and cylindrical (n ¼ 1)
symmetry

l2
�
d2Ψ
dr2

þ n
r
dΨ
dr

�
¼ fðΨÞf0ðΨÞ ð5Þ

and express the radial distance r ¼ 1=cþ lx in terms of
a dimensionless coordinate x so that the macroion surface
is located at x ¼ 0. Next, we expand ΨðxÞ ¼ Ψ0ðxÞ þ
clΨ1ðxÞ þ c2l2Ψ2ðxÞ up to quadratic order in curvature:
c1 − c ¼ c2 ¼ 0 for cylindrical and c1 ¼ c2 ¼ c for spheri-
cal geometry. The result is a set of three ordinary differential
equations,

Ψ00
0 ¼ ff0; Ψ00

1 ¼ ½ff0�0Ψ1 − nΨ0
0;

Ψ00
2 ¼ ½ff0�0Ψ2 − nΨ1

0 þ ½ff0�00 Ψ
2
1

2
þ nxΨ0

0; ð6Þ

where here and below we use the notation f ¼ fðΨ0Þ,
f0 ¼ f0ðΨ0Þ, ½ff0�0 ¼ f02 þ ff00, f00 ¼ f00ðΨ0Þ, ½ff0�00 ¼
3f0f00 þ ff000, and f000 ¼ f000ðΨ0Þ. Note Ψ0

0 ¼ dΨ0=dx
and analogously for Ψ0

1ðxÞ, Ψ0
2ðxÞ, and higher derivatives.

Because the macroion is isolated, we demand Ψ0ðxÞ ¼
Ψ1ðxÞ ¼ Ψ2ðxÞ ¼ 0 for x → ∞. In this case, the first
integration of Eq. (6) can be carried out,

Ψ0
0 ¼ −f; Ψ0

1 ¼ −f0Ψ1 − n
I
f
;

Ψ0
2 ¼ −f0Ψ2 − f00

Ψ2
1

2
þ n

�
f0

f2
I − 1

�
Ψ1

þ nx
I
f
þ n2

2

I2

f3
þ nð1 − nÞ

f

ZΨ0

0

dΨ
IðΨÞ
fðΨÞ ; ð7Þ

where we define I ¼ IðΨ0Þ ¼
RΨ0

0 dΨfðΨÞ. For a fixed
(scaled) surface charge density s at the macroion surface
(at x ¼ 0) the boundary conditions Ψ0

0ð0Þ þ s ¼ Ψ0
1ð0Þ ¼

Ψ0
2ð0Þ ¼ 0 must be fulfilled. When applied to x ¼ 0, Eq. (7)

yields the surface potential contributions explicitly as
functions of s

Ψ0ð0Þ ¼ f−1ðsÞ; Ψ1ð0Þ ¼ −n
�

I
ff0

�
Ψ0ð0Þ¼f−1ðsÞ

;

Ψ2ð0Þ ¼
n2

2

�
1

ff0
d

dΨ0

�
I2

ff0

��
Ψ0ð0Þ¼f−1ðsÞ

þ nð1 − nÞ
"

1

ff0

ZΨ0

0

dΨ
IðΨÞ
fðΨÞ

#
Ψ0ð0Þ¼f−1ðsÞ

: ð8Þ

Note that f−1ðsÞ denotes the inverse function of f so that
f(f−1ðsÞ) ¼ s. The curvature contributions to the surface
potential,Ψ1ð0Þ andΨ2ð0Þ, initially depend onΨ0ð0Þ—they
acquire their dependence on s through the relation
Ψ0ð0Þ ¼ f−1ðsÞ. We use the surface potential contributions
Ψ0ð0Þ ¼ Ψ0ð0; s̄Þ, Ψ1ð0Þ ¼ Ψ1ð0; s̄; nÞ, and Ψ2ð0Þ ¼
Ψ2ð0; s̄; nÞ in Eq. (8) to determine the free energy F via
the charging process specified in Eq. (3),

F
AkBT

¼ l
ν

Zs
0

ds̄½Ψ0ð0Þ þ clΨ1ð0Þ þ c2l2Ψ2ð0Þ�: ð9Þ

Equation (9) is compared with Eq. (4), both for cylindrical
geometry (n¼1), where F=AkBT¼F0=AkBT−κc0c þ
κc2=2, and for spherical geometry (n ¼ 2), where
F=AkBT ¼ F0=AkBT − 2κc0cþ ð2κ þ κ̄Þc2. This results
in expressions for the bending stiffness κ, Gaussian
modulus κ̄, spontaneous curvature c0, and free energy at
flat geometry F0,
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κ

kBT
¼ l3

ν

Zs
0

ds̄
�

1

ff0
d

dΨ0

�
I2

ff0

��
Ψ0ð0Þ¼f−1ðs̄Þ

;

κ̄

kBT
¼ −2

l3

ν

Zs
0

ds̄

2
64 1

ff0

ZΨ0

0

dΨ
IðΨÞ
fðΨÞ

3
75
Ψ0ð0Þ¼f−1ðs̄Þ

;

κc0
kBT

¼ l2

ν

Zs
0

ds̄

�
I
ff0

�
Ψ0ð0Þ¼f−1ðs̄Þ

;

F0

AkBT
¼ l

ν

Zs
0

ds̄ f−1ðs̄Þ: ð10Þ

Equation (10)—the major result of the present work—
predicts the bending properties emerging from the self-
consistency relation in Eq. (1) at any fixed surface charge
density. The only input is the function f (with its derivative
f0 and integral I). Next, we present applications and relate f
to the underlying equation of state.
Classical PB theory considers pointlike ions with ideal

mixing properties in an electrolyte of Debye screening length
lD ¼ l=

ffiffiffiffiffiffiffiffi
2ϕ0

p
and Bjerrum length lB ¼ ν=ð4πl2Þ. The

classical PB equation, l2D∇2Ψ ¼ sinhΨ, implies fðΨÞ ¼
2ðl=lDÞ sinhðΨ=2Þ and thus f0ðΨÞ ¼ ðl=lDÞ coshðΨ=2Þ,
IðΨÞ¼8ðl=lDÞsinh2ðΨ=4Þ, and f−1ðsÞ¼2arsinhðslD=2lÞ.
Using these in Eq. (10) results in

κ

kBT
¼ lD

2πlB

ðq − 1Þðqþ 2Þ
q ðqþ 1Þ ;

κ̄

kBT
¼ −lD

πlB

Z1
2

1þq

dz ln z
z − 1

κc0
kBT

¼ lnð1þq
2
Þ

πlB
;

F0

AkBT
¼ 1 − qþ p arsinhp

πlBlD
ð11Þ

with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
and p ¼ slD=ð2lÞ ¼ 2πlBlDσ=e.

Equation (11) coincides with Lekkerkerker’s results [15,16].
An approximate method to account for the nonvanishing

volume ν of the mobile salt ions is based on the mixing
properties of a lattice-gas, which leads to the Poisson-Fermi
equation [20,25],

l2∇2Ψ ¼ 2ϕ0 sinhΨ
1þ 2ϕ0ðcoshΨ − 1Þ ; ð12Þ

where we recall ϕ0 is the bulk volume fraction of cations
and anions each (with 0 < ϕ0 ≤ 1=2). The specific case
ϕ0 ¼ 1=2 serves as a model for a solvent-free ionic liquid
[26]. The characteristic length l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν=ð4πlBÞ
p

in Eq. (12)
reflects the volume ν per lattice site: we identify that
volume with the ion volume. Equation (2) implies for the
Poisson-Fermi equation

fðΨÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln ½1þ 2ϕ0ðcoshΨ − 1Þ�

p
; ð13Þ

and thus f−1ðsÞ ¼ arcosh½1þ ðes2=2 − 1Þ=ð2ϕ0Þ�. With
that we plot in Fig. 1 scaled curvature elastic constants
for the Poisson-Fermi (solid lines) and the classical PB
model (dashed lines) for different choices of ϕ0. The
limit jsj ≪ 1 (referred to as Debye-Hückel regime)

yields κν=ðkBTl3Þ ¼ 3s2=ð16
ffiffiffiffiffiffiffiffi
2ϕ3

0

q
Þ, −κ̄=κ ¼ 2=3, and

c0l ¼ 2
ffiffiffiffiffiffiffiffi
2ϕ0

p
=3. In the opposite limit, jsj ≫ 1, the diffuse

part of the EDL becomes irrelevant, leaving layers of
tightly condensed counterions that neutralize the surface
charges. With fðΨÞ ¼ ffiffiffiffiffiffiffiffiffi

2jΨjp
we obtain from Eq. (10)

κν=ðkBTl3Þ ¼ 2jsj5=15, −κ̄=κ ¼ 1=4, and c0l ¼ 5=ð8jsjÞ.
Hence, accounting for the nonvanishing ion volume ν
turns the saturation of κ (and similarly for κ̄), predicted
in the PB limit, into growth ∼jσj5, irrespective of ϕ0. As a
numerical illustration consider ν ¼ 1 nm3, lB ¼ 1 nm, and
σ=e ¼ 1.7=nm2. This corresponds to s ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4πlBν
p

σ=e ¼ 6.
Because of s ≫ 1, we find κ=kBT ¼ ð8πlB=15Þ ν3
ðσ=eÞ5 ¼ 23. Also, the nonvanishing ion volume tends
to suppress instability with respect to spherical curvature,
c1 ¼ c2. To this end, note that Eq. (4) implies the stability
condition −κ̄=κ < 2. The PB limit predicts an instability
for any choice of ϕ0, given jsj is sufficiently large [see the
dashed lines in Fig. 1(b)]. In contrast, the Poisson-Fermi
model predicts an instability only for ϕ0 ≲ 0.002, starting at
about s ≈ 1.3.
Our method in Eq. (10) to calculate the curvature elastic

constants is viable even when an analytic expression for
fðΨÞ is not available. For example, consider a class of
mean-field models that assume the same particle size and
shape for the mobile cations and anions, with an additional
nonideality contribution added to the underlying equation
of state. The free energy of such a model can be expressed
as the sum of the energy stored in the electric field and
a mixing contribution corresponding to variations in the

(a) (b)

(c)

FIG. 1. κ=kBT × ν=l3 (a), −κ̄=κ (b), and c0l (c), for ϕ0 ¼ 0.5,
0.1, 0.05, 0.01, 0.005, 0.001 (purple, red, blue, green, grey, black)
according to the Poisson-Fermi model [Eqs. (12) and (13), solid
lines] and the classical PB limit [Eq. (11), dashed lines]. The
black dotted lines mark the large-s limit.
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local volume fractions, ϕc and ϕa, of the mobile cations and
anions, respectively,

F
kBT

¼ 1

ν

Z
V

dv

�
l2

2
ð∇ΨÞ2 þ gidðϕcÞ þ gidðϕaÞ þ gðϕc þϕaÞ

− gð2ϕ0Þ− ðϕc þϕa − 2ϕ0Þg0ð2ϕ0Þ
�
; ð14Þ

where gidðϕÞ ¼ ϕ lnðϕ=ϕ0Þ − ϕþ ϕ0 is the ideal mixing
free energy of the mobile ions and gðϕc þ ϕaÞ is an
additional nonideal contribution. The latter appears in
the thermal equation of state of a homogeneous fluid with
N particles confined to a volume V at pressure P and
temperature T as PV=ðNkBTÞ ¼ 1þ g0ðϕÞ − gðϕÞ=ϕ,
where g0ðϕÞ denotes the derivative with respect to the
volume fraction ϕ ¼ νN=V. Variation of Eq. (14) yields
the relations lnðϕc=ϕ0Þ ¼ −Ψ − g0ðϕc þ ϕaÞ þ g0ð2ϕ0Þ
and lnðϕa=ϕ0Þ ¼ Ψ − g0ðϕc þ ϕaÞ þ g0ð2ϕ0Þ that define
the equilibrium distributions ϕc ¼ ϕcðΨÞ and ϕa ¼
ϕaðΨÞ. Generally, these are neither Boltzmann- nor
Fermi-distributed; we can express them using the function
hðϕÞ ¼ ϕeg

0ðϕÞ and its inverse function h−1 as

ϕc=a ¼ ϕ0e∓Ψ h−1ðhð2ϕ0Þ coshΨÞ
2ϕ0 coshΨ

: ð15Þ

Using these in Poisson’s equation l2∇2Ψ ¼ ϕa − ϕc

yields the self-consistency relation l2∇2Ψ ¼ tanhΨ×
h−1ðhð2ϕ0Þ coshΨÞ. With Eq. (2) this gives rise to

fðΨÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ZΨ
0

dΨ̄ tanh Ψ̄ × h−1ðhð2ϕ0Þ cosh Ψ̄Þ

vuuut : ð16Þ

When the function h−1 is available in analytic form,
fðΨÞ may be obtained explicitly. An example is the
Poisson-Fermi formalism discussed above: gðϕÞ ¼
ϕþ ð1 − ϕÞ lnð1 − ϕÞ, implying hðϕÞ ¼ ϕ=ð1 − ϕÞ and
h−1 ¼ ϕðhÞ ¼ h=ð1þ hÞ. Using these in Eq. (16), we
indeed recover Eq. (13). Another example is the
Carnahan-Starling equation of state, PV=ðNkBTÞ ¼
ð1þ ϕþ ϕ2 − ϕ3Þ=ð1 − ϕÞ3, and thus gðϕÞ¼ϕ2ð4−3ϕÞ=
ð1−ϕÞ2, as a model for an underlying hard-sphere fluid of
mobile ions (all of equal size). Here, an analytic expression
for h−1 ¼ ϕðhÞ is not available, but h−1 can be computed
numerically and then used to find fðΨÞ according to
Eq. (16). Figure 2 shows a comparison of predictions from
the Poisson-Carnahan-Starling (solid lines) and Poisson-
Fermi models (dashed lines). For a meaningful comparison
we adjusted the Poisson-Fermi model such that each
mobile ion is spherical and thus occupies a volume fraction
α ¼ π=6 of a cubic lattice site; this replaces Eq. (13) by
f ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2α ln½1þ 2ϕ0ðcoshΨ − 1Þ=α�p
. The differences

observed in Fig. 2 for intermediate s result from the higher
pressure predicted by the Carnahan-Starling equation of
state as compared to a lattice gas. For example, the former
has a second virial coefficient 4π=3 times larger than
the latter.
While Eq. (16) is restricted to ions of identical size

and shape, Maggs and Podgornik [27] have recently made
the connection of our function fðΨÞ to the underlying
electrolyte’s equation of state for the general case of
arbitrary ion sizes. Their analysis leads to fðΨÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2νΔPðΨÞ=kBT

p
, where ΔP is the excess osmotic pres-

sure of the ions. For example, classical PB theory implies
ΔP ¼ 2ϕ0ðcoshΨ − 1ÞkBT=ν, and the symmetric lattice
gas gives rise to ΔP ¼ ln½1þ 2ϕ0ðcoshΨ − 1Þ�kBT=ν.
Reference [27] also discusses the extraction of the pressure
for two size-asymmetric models, the Flory-Huggins and the
Boublik-Mansoori-Carnahan-Starling-Leland equations of
state. Equation (10) of our present work thus allows for the
extraction of the curvature elastic constants according to
these models.
Our final example is an extension of the Poisson-Fermi

model, proposed by Han et al. [28], to anions and cations
with mismatching volumes νc ¼ ξν and νa ¼ ν, respec-
tively, leading to the relation

e
ξ
2
fðΨÞ2 ¼ ξϕ0e−Ψ þ ½1 − ϕ0ð1þ ξ − eΨÞ�ξ

ð1 − ξϕ0Þξ−1
ð17Þ

for the function fðΨÞ defined in Eq. (1). Here, the
limiting behavior in the Debye-Hückel regime, jsj ≪ 1,

is κν=ðkBTl3Þ ¼ 3s2=ð16
ffiffiffiffiffiffiffiffiffiffi
2ϕ3

eff

q
Þ, −κ̄=κ ¼ 2=3, c0l ¼

2
ffiffiffiffiffiffiffiffiffiffi
2ϕeff

p
=3, with the effective volume fraction ϕeff ¼

ϕ0½1 − ϕ0ð1þ ξÞ=2�=ð1 − ξϕ0Þ. The different ion sizes
introduce asymmetry for positive and negative σ: for

(a) (b)

(c)

FIG. 2. κ=kBT × ν=l3 (a), −κ̄=κ (b), and c0l (c), for ϕ0 ¼ 0.1,
0.05, 0.01, 0.005, 0.001 (red, blue, green, grey, black) according
to the Poisson-Carnahan-Starling model (solid lines) and the
Poisson-Fermi model (dashed lines). The black dotted lines mark
the large-s limit. The Poisson-Fermi model is adjusted so that
each spherical ion occupies a volume fraction π=6 of a lattice site.
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−s ≫ 1 we obtain κν=ðkBTl3Þ ¼ 2jsj5ξ3=15 and c0l ¼
5=ð8ξjsjÞ, and for s ≫ 1 we obtain κν=ðkBTl3Þ ¼
2s5=15, and c0l¼5=ð8sÞ. In both cases, −κ̄=κ¼1=4.
Figure 3 shows κν=ðkBTl3Þ with its asymmetry for s <
0 (left diagram) and s > 0 (right diagram) for ξ ¼ 23 ¼ 8
(solid lines). For comparison, we also display the case
ξ ¼ 1 (dashed lines), for which κðsÞ ¼ κð−sÞ.
In summary, we have introduced a general method to

compute the curvature elastic moduli for a class of EDL
models described by Eq. (1) and exemplified our approach
based on both a lattice gas (with and without mismatching
ion sizes) and the Carnahan-Starling equation of state.
Given the recently stated general relationship between
Eq. (1) and the underlying equation of state of the bulk
electrolyte [27], it is now possible to include curvature
effects into the calculation of EDL free energies. Our
method leading to Eq. (10) can also be applied to electrodes
with fixed surface potential, extended to arbitrary position
of the neutral surface [17], used to calculate the curvature
dependence of the differential capacitance, and generalized
to incorporate nonelectrostatic, hydration-mediated ion-ion
and ion-surface interactions.
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