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Granular gases as dilute ensembles of particles in random motion are at the basis of elementary structure-
forming processes in the Universe, involved in many industrial and natural phenomena, and also excellent
models to study fundamental statistical dynamics. The essential difference to molecular gases is the energy
dissipation in particle collisions. Its most striking manifestation is the so-called granular cooling, the
gradual loss of mechanical energy EðtÞ in the absence of external excitation. We report an experimental
study of homogeneous cooling of three-dimensional granular gases in microgravity. The asymptotic scaling
EðtÞ ∝ t−2 obtained by Haff’s minimal model [J. Fluid Mech. 134, 401 (1983)] proves to be robust, despite
the violation of several of its central assumptions. The shape anisotropy of the grains influences the
characteristic time of energy loss quantitatively but not qualitatively. We compare kinetic energies in the
individual degrees of freedom and find a slight predominance of translational motions. In addition, we
observe a preferred rod alignment in the flight direction, as known from active matter or animal flocks.

DOI: 10.1103/PhysRevLett.120.214301

Cars and pedestrians in traffic, migrating groups of
animals or bacteria, bubbles in fluid flows, or grains in
sand storms are examples of large particle ensembles
where occasional interactions of the individual constituents
govern the collective dynamics. All these are inherently out
of thermal equilibrium. Granular gases, i.e., dilute ensem-
bles of grains interacting by dissipative collisions, represent
the simplest of such systems, without long-range inter-
actions. In contrast to molecular gases, the dissipative
character of particle interactions determines the ensemble
properties: Clustering (e.g., [1–7]), non-Gaussian velocity
distributions (e.g., [8–21]), and anomalous pressure scaling
[22–24] are but a few documented examples.
But, even today, quantitative experiments are very

much needed for a better understanding of the funda-
mental features of such ensembles. Analytical and numeri-
cal studies in the past 20 years produced results strongly
depending on the simplifications made and assumptions of
specific grain properties (see, e.g., [1,25–32]). Often,
spherical grains under ideal initial and boundary conditions
were considered. In experiments with quasi-2D layers (e.g.,
[5–8,10–12,33,34]), energy equipartition [8,33,34] and
collisions of particles [35,36] were analyzed in addition
to the above-mentioned features.
Most prominent is granular cooling, the permanent loss

of kinetic energy in the absence of external forcing. Starting
from an initially excited state with spatially homogeneous
statistical properties, the ensemble enters an initial period
of homogeneous energy loss. At longer time scales, grains
can spontaneously cluster. Such clustering is a key ingre-
dient for the formation of planetesimals and larger objects
in solar systems [37–40].

For the homogeneous phase, Haff [41] predicted that the
mean energy of a freely cooling granular gas of frictionless
spheres obeys the scaling

EðtÞ ¼ E0ð1þ t=τHÞ−2; ð1Þ

yielding EðtÞ ∝ t−2 for t ≫ τH, with the characteristic
Haff time τHðE0Þ. Haff starts with the dissipation rate
∂=∂tðρv̄2=2Þ ¼ −ξð1 − ε2Þρv̄3=s. Here, ρ is the mass
density, s is the mean grain separation (in our dilute system
to be replaced by the mean free path λ), ε is the normal
restitution coefficient, and v̄ is the mean absolute velocity. ξ
depends upon the dimensionality of the system; it basically
accounts for the fact that only the relative velocities (in our
system, also rotations) of colliding particles are relevant for
the energy loss, which is then redistributed among all
degrees of freedom (d.o.f.). Haff assumed that the distance
between the grains is small compared to their diameter (a
condition relaxed in subsequent work). He set the quantity

v2 (related to the average kinetic energy) equal to v̄2 (the
square of the mean absolute velocity determining the
collision rate v̄=s).
The Haff time describing cooling after time ti is

τHðtiÞ ¼ λ½ξð1 − ε2Þv̄ðtiÞ�−1: ð2Þ

Villemot and Talbot [30] extended this model to gases of
frictionless ellipsoids and compared analytical approxima-
tions with simulations. Spherocylinders were simulated by
Rubio-Largo et al. [31]. The aspect ratios in both studies
were much smaller than those of our rods. Huthmann,
Aspelmeier, and Zippelius [32] explored the limit of
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infinitely thin needles. All these models confirmed the t−2

time dependence of the kinetic energy; corrections concern
only the prefactor ξ. Nevertheless, Kanzaki et al. [25] found
an exponent −5=3 for translational d.o.f. from simulations
of elongated viscoelastic grains [εðvÞ] in 2D. The same
exponent was derived rigorously for viscoelastic spheres
[42]. In addition, a rather unusual aspect of Kanzaki’s
simulations is that translational and rotational d.o.f. have
different scaling exponents.
Preparation of a freely cooling granular gas in 3D is

practically impossible under normal gravity. Sounding
rockets, satellites, and drop towers offer appropriate con-
ditions [43]: excellent microgravity (μg) quality, down to
residual accelerations of 10−5 m=s2. In a pioneering experi-
ment, the dynamical clustering of spheres was reported by
Falcon et al. [2], but a quantitative analysis at the grain level
was not possible for technical limitations. Rod-shaped
grains offer experimental advantages over spheres: a much
shorter mean free path at comparable filling fractions [20],
a more random energy injection by vibrating container
walls [44], and an efficient energy redistribution among the
d.o.f. in collisions [31]. The latter two features can reduce
spatial inhomogeneities. Translations and rotations can be
followed in 3D [45]. We present results of the first
experimental investigation of a homogeneously cooling
3D granular gas.
Ensembles of 374 rods of l ¼ 10 mm length and d ¼

1.35 mm diameter are studied in a container of 11.2 cm ×
8.0 cm × 8.0 cm [Figs. 1(a)–1(c)] during ≈9 s of micro-
gravity realized in the ZARM Drop Tower, Bremen. The
corresponding volume fraction of grains is ϕ ¼ 0.75%.
The mean free path estimated from the filling fraction and
the rod dimensions, assuming random rod orientations,
is λ ≈

ffiffiffi
2

p
d2=½ϕðlþ 7.55dþ 2.02d2=lÞ� ≈ 1.65 cm (see

[46]), well below the Knudsen regime (λ > container size).
The rods are custom-made from insulated copper wire, their
mass is m ¼ 37.5 mg, and moments of inertia for rotations

around the rod axis and perpendicular to it are
Jk ¼ 4.6 pNm s2 and J⊥ ¼ 315 pNm s2, respectively.
The Supplemental video [46] shows one typical experi-
ment. We average 15 independent experiments.
Steady excitation state.—During the initial 2 s of

microgravity, the grain ensemble is excited mechanically.
In this initial, driven state, one finds an excess of trans-
lational energy in the direction of excitation x (normal
to the vibrating walls), hExð0Þi ≈ 135 nJ per grain.
Translations in the directions y and z and rotations are
only weakly excited by the vibrating walls [44]; they
are driven by rod-rod collisions. The indirectly excited y
and z translations are equivalent. Initially, hEy þ Ezi=2≈
90 nJ, and hErot=2i ≈ 64 nJ for rotations about the short
rod axes (these two rotations cannot be distinguished in our
experiment; we can only determine their sum Erot). Such
differences in translation energies in the excitation direction
and perpendicular to it are well known (e.g., [17,18,34,47]).
As in our previous studies [20,45], we observe a violation
of energy equipartition between rotations and translations
in the driven state.
Spatial homogeneity during cooling.—After the excita-

tion is stopped (t ¼ 0), videos (100 fps) are recorded and a
particle-based statistical analysis (see [46]) is performed to
evaluate the ensemble dynamics. Throughout the cooling
process, we found only a marginal tendency of clustering.
This is visualized best by overlaying image sequences from
a single experiment. Figures 1(d) and 1(e) show two such
overlays. Immediately after t0, eight subsequent frames of
the top video were superimposed [Fig. 1(d)], and the field
of view is rather uniformly covered by rods; Fig. 1(e) is a
superposition of eight frames from the final phase of the
experiment, where every 15th frame was chosen, because
the mean velocity is slower by a factor of ≈15. One can
identify only small inhomogeneities in the particle distri-
bution, which may be neglected here.
Partition of the kinetic energy.—Of primary interest are

the energy partition and the energy loss during cooling.
Both aspects cannot be discussed separately. After the
excitation stopped, the kinetic energy is redistributed by
collisions. Thereby, the partition among the d.o.f. changes
drastically (Fig. 2). Within statistical fluctuations, a steady
distribution of the kinetic energy is reached after ≈2…2.5 s
[48]. The initial excess of Ex has vanished. The kinetic
energies of rotations around the short rod axes remain
slightly smaller than those of the translational d.o.f. This is
in qualitative agreement with simulations of frictionless
ellipsoids [30], rods [31], and needles [32] that predicted an
excess of translational over rotational energies per d.o.f. by
a few percent.
Rotations around the rod symmetry axis are excited only

by frictional contacts of particles in collisions (similar to
the rotational d.o.f. of spherical grains [26–28,49]). The
ratio of the moments of inertia is J⊥=Jk ≈ 70; therefore,
such rotations would need to be almost one order of
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FIG. 1. (a) Sketch of the experimental setup and definition of
the coordinates. Two side walls can be vibrated mechanically; the
top and front walls are transparent. (b),(c) Typical frames of the
top and front videos. Colored particles are tracked, and black rods
provide thermal background. (d),(e) Overlay of eight frames of
the top view, at the beginning of cooling [(d) homogeneous state]
and at the end of the experiment [(e) slight clustering].
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magnitude faster than the other rotations in equipartition.
For an estimate, we marked some rods with dots to track
axial rotations to evaluate them quantitatively, albeit with
poorer statistics than the other d.o.f. Indeed, the related
mean kinetic energy is about one order of magnitude lower
than those of the other d.o.f. [50]. The few theoretical
studies of elongated grains disregard friction; thus, the third
rotation is not included. The other two rotational d.o.f. are
directly excited by rod-rod collisions and do not require
friction. For rough spheres, models predict a much stronger
excitation of rotational d.o.f. compared to translations (e.g.,
[26,49]). Energy transfer through collisions of rods is much
more complex and thus not directly comparable with these
models.
The distributions of the velocity components vx, vy, and

vz are non-Gaussian. Within statistical accuracy, their shape
remains nearly unchanged during the homogeneous cool-
ing. The kurtosis shows no obvious trend, fluctuating
between 3 and 4, with an average of 3.5. In contrast, in
simulations of both ellipsoids [30] and spherocylinders
[31], perfect Gaussian distributions were reported.
Cooling.—During the observation window of about 7 s,

the total kinetic energy decays by more than 2 orders of
magnitude to ≈0.45 nJ per d.o.f. Checking Haff’s precon-

dition, we find experimentally a ratio of v2 and v̄2 between

1.2 and 1.32. Data in Fig. 2(a) are in excellent agreement
with an exponent −2 for the energy decay. Figure 3(a)
shows that Eq. (1) fits the mean total energy after some
initial period of ≈1.25 s.
The initial discrepancy is easily understood: Immediately

after excitation, the system is spatially inhomogeneous. For
example, particles are “hotter” near the vibrating plates.
The individual d.o.f. are at very different granular temper-
atures. Therefore, the Haff fit after 1.25 s [dashed line in
Fig. 3(a)] overestimates the initial EðtÞ. After about 1.25 s,
the system is in the homogeneous cooling regime. This is
confirmed by the mutual dependence of τH and v̄ [Fig. 3(b)]:
Experimental data were fitted with Eq. (1) starting at
different ti > 0 during cooling, and the inverse of the fit
parameter τHðtiÞ was related to the momentary mean
absolute velocities v̄ðtiÞ. The linear fit confirms Eq. (2)
and yields ξ ¼ 18.9 m−1λ=ð1 − ε2Þ.
A further test of the model is the measured cumulative

collision number per particle

Nc ¼
1

ξð1 − ε2Þ ln
�
1þ t

τH

�
þ const ð3Þ

(Fig. 4). The dashed line is a fit for t > 1.25 s, yielding
ξ ¼ 0.31=ð1 − ε2Þ. Again, the initial values deviate,

FIG. 2. (a) Decay of the kinetic energy per particle in the
individual degrees of freedom: After ≈2.5 s, the energy partition
is steady within statistical fluctuations (see Supplemental
Material [46]), and the decay proceeds as t−2 as predicted by
Eq. (1) (see logarithmic plot in the inset). (b) Energies in the
different types of d.o.f., all translational d.o.f. equilibrate within
statistical fluctuations, rotations about the short rod axes are
systematically less excited by about 10%–20%, and the rotations
about the long axis were not considered here.

FIG. 3. The cooling characteristics matches Haff’s model.
(a) Decay of the average kinetic energy per d.o.f. and particle:
After ≈1.25 s, the curve is in good agreement with Haff’s model
[41], Eq. (1) (logarithmic fit). (b) Comparison of the cooling rate
and the measured mean velocities. The slope is ξð1 − ε2Þ=λ. Solid
symbols represent the data included in the fits; open symbols
correspond to the initial 1.25 s when Haff’s equation is not yet
applicable.
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partially because the homogeneous cooling is not yet
reached and partially because the particles are very fast,
so that not all collisions may have been detected (both
reflected in the offset). Together with the fit in Fig. 3, we
obtain λ ¼ ð0.31=18.9Þ m ≈ 1.64 cm, in excellent agree-
ment with our geometrical estimate of 1.65 cm.
The following complications affect the interpretation of

the factor ξ: In Haff’s model, the energy loss per collision
is distributed among three translational d.o.f., whereas in
our system, translational energy is partially converted into
rotational energy and vice versa. The loss of rotation energy
per collision is much more difficult to estimate than for
frictionless spheres. In addition, the mean kinetic energy of
rotations about the long rod axis is known only to the order
of magnitude. An analytical model [30] and numerical
simulations [30,31] provide estimates of ξ. We calculate the
collision rate per particle [Eq. (13) in Ref. [30] ], approxi-
mating our rods by ellipsoids and using the corresponding
geometrical parameters: the isotropically averaged contact
value of the pair distribution function, gc ≈ 1.035, the
average exclusion surface Sc ¼ 25 × 10−6 m2, and the
effective number of excited d.o.f. of about 5. Shape effects
are reflected in a correction factor hDic describing the
average efficiency of energy transfer during a collision,
compared to spheres. This value increases from 1 for an
aspect ratio of 1 to about 1.4 for ellipsoids with aspect
ratio 3 [30]. With our τH, we obtain hDic ¼ 5.0, a value
much larger than the extrapolation of Villemot’s graph,
hDic ≈ 1.75. Thus, the cooling of rods in our experiment is
more efficient by a factor of almost 3. There are several
potential explanations for this discrepancy. First, it is not
clear whether the predictions for short ellipsoids or spher-
ocylinders can be extrapolated to rods with aspect ratios
above 7. Second, the mass distribution along the grain axis
substantially affects the energy distribution between trans-
lations and rotations [30,32]. Third, the models disregard
friction. An additional problem is the preferential alignment
of the rods in the flight direction (see below). The scattering
cross section of a rod momentarily flying in the long axis
direction is much smaller than in the perpendicular

orientation. Consequently, the collision characteristics dif-
fer, and the transfer of angular momentum will be much
smaller on average in the first case.
Alignment.—One particular feature of anisotropic grains

is their tendency to align in a shear flow [51]. Correlations
between the velocity and orientation were reported in
simulations of hard needles [32]. We find similar correla-
tions in the distribution of relative rod orientations pðθÞ,
where θ ¼ 0° resembles a spearlike orientation. During
excitation, the alignment angles are distributed almost
isotropically [pðθÞ ∝ sin θ]. During cooling, rods are more
often in a spearlike orientation, and the probability of small
θ increases, while it decreases for large θ (Fig. 5). This can
be understood intuitively: Rod-rod collisions are more
probable when the rod axis is perpendicular to the flight
path than in the flight direction. The consequence is a
slightly larger λ than estimated for random rod orientations.
The effect is small, though, as illustrated in the bottom
images in Fig. 5. Note that the highest possible alignment
of rotating rods would be an equal distribution pðθÞ ¼ 2=π
(black line in the image), when all rotations occur about
short axes perpendicular to the flight path (like spokes of
a wheel).
Correlations between translational and rotational

motions were even found in simulations of ensembles of
spheres [27,29]. These findings are only loosely related
to the described alignment of rods, but both effects
influence the collision statistics and are therefore important
for realistic models of granular cooling, even in dilute
ensembles.
The experimental study of homogeneous free cooling of

a 3D granular gas in microgravity demonstrates that Haff’s
scaling law of the energy loss with time is surprisingly
robust, even though several central assumptions are not

FIG. 4. Cumulated number of collisions per particle determined
from the rate of collision of traced (colored) particles in the
videos. Only the dark data points were fitted.

FIG. 5. Angle between the rod symmetry axis and v⃗ during the
initial 0.5 s of cooling and during the last 0.5 s of the experiment.
The pictures below illustrate the distribution pðθÞ by bright dots
projected on a unit sphere, looking in the flight direction, left:
isotropically distributed rod axes, middle: experiment at t ≈ 6 s,
and right: best possible alignment.
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fulfilled; e.g., one has friction and shape anisotropy of the
grains and non-Gaussian velocity distributions even in the
homogeneous cooling state. Quantitatively, the efficiency
of cooling is much higher in our experiment than expected
from an extrapolation of an analytical model for ellipsoids
[30]. Energies become nearly equally distributed among the
d.o.f. in the homogeneously cooling state, with a slight
excess (≈ 10%–20%) in the translational d.o.f. Even the
purely friction-coupled rotations around the long axis are
excited, albeit with one order of magnitude lower mean
energy. A gradual alignment of rods in the flight direction
is also documented, explainable by the lower collision
probability in this flight orientation.
The detailed mechanisms underlying the collective dyna-

mics of realistic granular gases, e.g., the exact role of
particle shape, contact parameters, confinement, and spatial
inhomogeneities, are still to be explored. Beyond funda-
mental physics, our results provide a robust benchmark for
the realistic modeling of dilute granular ensembles, which
in turn forms the basis for the description of more complex,
dense ensembles. Further quantitative experiments may
allow tests of extended models [26,31] which consider the
exchange between rotational and translational d.o.f. in
detail. In perspective, only the combined efforts of theo-
retical studies allowing for experimental verification and
quantitative experiments may lead to the comprehensive
understanding of granular fluids and clarify the links
between individual grain collision and ensemble dynamics
of granular gases in an extendable and realistic manner.
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