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Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic
attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being
synchronized. We report that these states with partially broken symmetry, so-called chimera states, have
different setwise symmetries in the incoherent oscillators, and in particular, some are and some are not
invariant under a permutation symmetry on average. This allows for a classification of different chimera
states in small networks. We conclude our report with a discussion of related states in spatially extended
systems, which seem to inherit the symmetry properties of their counterparts in small networks.
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It has been known for many years that symmetric
coupling between identical oscillating units may lead to
stable attracting sets with reduced symmetry, such as
cluster states [1]. These states consist of two or more
groups in which the individual oscillators behave identi-
cally. In recent years, however, new states have been
observed in which synchronized and incoherently oscillat-
ing groups coexist. Since their identification in 2002 [2],
these so-called chimera states [3] have attracted consid-
erable interest and have been observed in numerous
oscillatory systems; many of them have been reviewed
in recent literature [4,5]. While the early studies considered
large networks or spatially extended systems, chimera
states also appear in small systems of just four units, in
which two oscillators are synchronized and two are
desynchronized [6–9]. In systems of phase oscillators,
(weak) chimera states are characterized by different mean
frequencies of the synchronized and desynchronized
groups [6]. The definition of weak chimeras related to
symmetry breaking has been investigated in Ref. [10]. For
many theoretical studies [7,11,12] and experiments
[7,13,14], however, the dynamics are dominated by ampli-
tude fluctuations, rendering a phase reduction, and, in turn,
a classification based on phase dynamics, impossible.
In this Letter, we investigate different kinds of chimera

states in small networks of coupled oscillators even beyond
phase oscillator systems. Different states are distinguished
using the setwise symmetries of the attracting manifold,
which can be determined with symmetry detectives [15,16].
We apply this method to various dynamical states observed
in mean-coupled Stuart-Landau oscillators, and relate those
states to different chimera states reported in recent liter-
ature. Finally, we show and discuss how our results extend
to larger networks and spatially extended systems.

Given a dynamical system

_x⃗ ¼ f⃗ðx⃗Þ; ð1Þ

then this system is invariant under the operation γ if

f⃗ðγx⃗Þ ¼ γf⃗ðx⃗Þ: ð2Þ

The group fγg fulfilling Eq. (2) is called the symmetry
group Γ and system (1) is said to be Γ equivariant [17].
However, as mentioned above, solutions of Eq. (1) are not
necessarily invariant under the same symmetry group Γ;
i.e., the symmetry of solutions can be broken. Let x⃗ be a
solution of system (1), then the group of transformations
that leave x⃗ invariant,

Σx⃗ ¼ fγ ∈ Γ∶γx⃗ ¼ x⃗g;

is called the isotropy subgroup of x⃗. Note that Σx⃗ ⊆ Γ.
Even turbulent or spatiotemporally chaotic states may

exhibit some symmetries in their time-averaged dynamics
[18–20]. Such symmetries are related to the setwise
symmetry of the attractor, that is, the group of symmetry
operations that leave the whole attractor invariant. If the
dimension of the phase space is three or less, such
symmetries can be observed visually (see, for example,
Ref. [21]). For higher-dimensional systems, Barany et al.
proposed so-called symmetry detectives [15]. The idea is to
transform the task of finding the symmetry group of a set A
in space V to finding the symmetries of a single point KA in
some auxiliary space Ṽ [15,17]. This can be achieved
by projecting the set A through a Γ-equivariant map
ϕ∶V → Ṽ. Then, KA can be expressed as
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KA ¼ lim
T→∞

1

T

Z
T

0

ϕ(xðtÞ)dt

for continuous dynamical systems [16]. ϕ∶V → Ṽ is called
a detective with

ΣϕðAÞ ¼ ΣA;

if ϕ is Γ equivariant and Ṽ large enough, as explained in
Ref. [17]. Once we have mapped a trajectory of the
dynamical system into the vector space Ṽ using a detective
function ϕ as described above, we can estimate the
symmetry ΣA of an attracting set by examining the isotropy
subgroup ΣðωÞ of ω ¼ KA ∈ Ṽ [22]. This can be achieved
by taking ωγ ¼ KγA and computing the distances

tγ ¼ kωγ − ωk
for each symmetry operation γ ∈ Γ. The isotropy group
ΣðωÞ is thus the set of all γ for which tγ ≈ 0. This is in
contrast to the instantaneous symmetry of a solution, which
is the intersection of the isotropy groups ΣðxÞ at every
position of the attractor,

Σinstant ¼ ∩
x∈A

ΣðxÞ:

Using these two estimates, one can calculate the instanta-
neous and setwise symmetries of an attracting manifold.
We apply this method to different solutions of N ¼ 4

Stuart-Landau oscillators, linearly coupled through the
ensemble average

∂tWk ¼ Wk − ð1þ ic2ÞjWkj2Wk þ κ

�
1

N

XN
j¼1

Wj −Wk

�
;

ð3Þ
with the complex variables Wk, k ¼ 1;…; N, the shear
parameter c2 ∈ R, and the coupling constant κ ¼ αþ iβ, α,
β ∈ R. This is motivated by the fact that this system shows
chimeralike dynamics for large N [11]. Here, we fix c2 ¼ 2
and β ¼ −0.7 and keep α as a tunable parameter. Since the
Wk are complex, Eq. (3) describes the temporal evolution in
C4 ≅ R8. Furthermore, note that Eq. (3) is invariant under
a permutation of the indices, S4, and a phase shift
W → W exp ðiθÞ. The latter can be eliminated using the
transformed variables Rk ¼ jWkj, k ¼ 1;…; 4, and
Δθkþ1;k ¼ θkþ1 − θk ¼ ∠Wkþ1 −∠Wk, k ¼ 1;…; 3,
describing the dynamics in a seven-dimensional phase
space (R4þ × T3, with T ¼ R=2πZ). Thus, a limit cycle
in the original variables [Eq. (3)] corresponds to a fixed
point in the new amplitude and phase-difference variables.
See the Supplemental Material for the equations in these
new variables and for details on the numerical methods
used to integrate them [23].
As shown in Ref. [26] for systems with the symbol

permutation symmetry SN, one can use the ring group RΓ
as auxiliary space Ṽ with the polynomial detective

ϕkðx⃗Þ ¼ pðγ−1k x⃗Þ; p ¼ x1x22…xN−1
N−1;

with k ¼ 1;…; jSN j and γ−1k being the inverse of γk ∈ SN .
That is, for four globally coupled oscillators with S4

symmetry of order jS4j ¼ 24, a possible choice for a
symmetry detective is

ϕkðx⃗Þ ¼ pðγ−1k x⃗Þ; p ¼ x1x22x
3
3 → ϕ⃗ðx⃗Þ ¼

0
BBBBB@

x1x22x
3
3

x2x21x
3
3

..

.

x4x23x
3
2

1
CCCCCA
;

which we adopt in this Letter, although other choices of ϕ
are also possible [22]. Here, we take the real parts of our
complex time series Wk as input xk.
We start our considerations from a stable fixed-point

solution with R1 ¼ R2 > R3 ¼ R4, Δθ21 ¼ 0 ¼ Δθ43, and
Δθ32 ≠ 0 (first state in Table I), with broken symmetry
S2 × S2, which can be obtained analytically (see
Supplemental Material for its analytic derivation [23]).
Reducing α leads to a supercritical Hopf bifurcation, where
the fixed-point solution becomes unstable and a stable
periodic orbit is created. That is, the amplitudes and the
phase difference Δθ32 start to oscillate. Further changing α
leads to a pitchfork bifurcation, resulting in a reduced
symmetry of the periodic orbit in which only two oscil-
lators remain synchronized, R1 ¼ R2 and Δθ21 ¼ 0, the
other two oscillators now having different amplitudes R4 <
R3 < R1 and phases Δθ43 ≠ 0. The time series of the
amplitudes of such a state are depicted in Fig. 2(a). This
limit cycle gets destroyed through a period-doubling
bifurcation at which a stable period-2 orbit is created.
Periodic solutions are best visualized using a Poincaré

section, recording the dynamical states at discrete points in
time [27]. Here, we use a representation, as shown in Fig. 1,
plotting only the value of each amplitude Rk when it

TABLE I. Different states observed in the system of four mean-
coupled Stuart-Landau oscillators for β ¼ −0.7 and c2 ¼ 2. FP
denotes fixed-point solution in the amplitude and phase-differ-
ence variables, PO denotes periodic orbits, chaos indicates
chaotic dynamics (chimeras), and P6O indicates a period-6 orbit.
The numbers indicate the number of synchronized oscillators,
and the indices (a)–(d) correspond to the regions in Fig. 1 and the
time series in Fig. 2.

State α-range Symmetry Index

2-2 FP > 0.8760 Si
2 × Si

2

2-2 PO 0.8760–0.8562 Si
2 × Si

2

2-1-1 PO 0.8562–0.8381 Si
2 (a)

2-1-1 chaos 0.8381–0.8376 Si
2 (b)

2-1-1 P6O 0.8376–0.8374 Si
2 × Ξ2 (c)

2-1-1 chaos < 0.8372 Si
2 × Sa

2 (d)
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becomes maximal. Note that a simple periodic orbit
appears as a single point per oscillator, whereas two points
per oscillator in the Poincaré section indicate a period-2
orbit (see left side of Fig. 1). This reduces the dimension of
the trajectories and simplifies the analysis. In particular, as
shown in Fig. 1, the period-2 orbit bifurcates into a period-4
orbit when α is reduced. This subsequently bifurcates into a
period-8 orbit and so forth. In other words, one observes a
cascade of infinitely many period-doubling bifurcations
[28], leading to a chaotic state [region (b) in Fig. 1]. The
time series of the amplitudes of such a chaotic attractor are
depicted in Fig. 2(b). It is important to notice that the phase
and the amplitude difference of two of the oscillators is
zero, indicating that, although the total dynamics are
chaotic, these two oscillators are synchronized.
Furthermore, this chimera state is not invariant under a
permutation of the third and fourth oscillator. In other
words, the two incoherent oscillators are not symmetric.
This can be verified using symmetry detectives, as shown in
Fig. 3(a). There, one can see that the distances tγ are
nonzero when γ involves a permutation of the two
incoherent oscillators. In other words, the underlying
chaotic attractor has an Si

2 symmetry in the two synchron-
ized oscillators only, with the superscript i indicating that
the symmetry is instantaneous.
Further reducing α destroys the chimera state, yielding

again a periodic state [region (c) in Fig. 1], with the time

FIG. 1. Poincaré map recording the maxima of the amplitudes
of the individual oscillators for 0.84 ≥ α ≥ 0.836 and β ¼ −0.7.
Region (a) marks the parameter range in which periodic orbits are
observed, starting with a period-doubled state; (b) indicates the
existence of asymmetric chimera states; (c) denotes the region in
which periodic orbits with discrete rotating-wave symmetry exist;
and, for α values in region (d), symmetric chimera states are
observed. The corresponding time series of the amplitudes are
shown in Fig. 2.

(a)

(b)

(c)

(d)

FIG. 2. Time series of the amplitudes of the four oscillators of
(a) a periodic orbit for α ¼ 0.85, (b) an asymmetric chimera state
at α ¼ 0.83764, (c) a periodic orbit with phase-shift symmetry at
α ¼ 0.8376, and (d) a symmetric chimera state at α ¼ 0.8365.
The other parameters are β ¼ −0.7 and c2 ¼ 2.0. Note that two
oscillators (here green and blue) are always synchronized for
these parameter values and thus form only one curve. The vertical
lines in (c) indicate the period of the desynchronized oscillators
(dashed) and synchronized oscillators (dotted), respectively.

(a)

(b)

FIG. 3. The distances tγ for the symmetry operations γ ∈ S4.
tγ ≈ 0 indicates the instantaneous and average symmetries of
(a) the asymmetric chimera states at α ¼ 0.83764 and (b) the
symmetric chimera state at α ¼ 0.8365, suggesting that the
asymmetric chimera is invariant under the actions of Si

2, and
the symmetric chimera is invariant under the actions of Si

2 × Sa
2 .
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series shown in Fig. 2(c). From the amplitude time series,
one can observe that the two desynchronized oscillators
perform the same oscillations but with a constant phase
shift. Such symmetry is called a phase-shift symmetry or
discrete rotating wave [17,29], reminiscent of the rotating
waves observed in Ref. [12]. Denoting the phase-shift
symmetry of the two nonsynchronized oscillators with Ξ2,
this state has an isotropy subgroup Si

2 × Ξ2. Furthermore, it
is worth mentioning that, due to the rotating-wave sym-
metry, the frequency of the oscillation in the amplitudes of
the synchronized oscillators is twice the frequency of the
desynchronized oscillators. This is reminiscent of the weak
chimera states reported in Ref. [6], which are periodic
but have different mean frequencies in the individual
oscillators.
Further decreasing α first leads to a pitchfork bifurcation

in which orbits with reduced symmetries are born, similar
to the symmetry-decreasing bifurcations reported in
Ref. [30]. After another cascade of period-doubling bifur-
cations, one again obtains chaotic dynamics [see the time
series in Fig. 2(d)]. Surprisingly, and opposed to the
chimera state described above, this attractor is symmetric
under a permutation of the two desynchronized oscillators.
That the attracting manifold is indeed invariant under such
a symmetry operation can be verified using the symmetry
detectives mentioned above, with the distances tγ shown in
Fig. 3(b). Note that a distance close to zero indicates an
invariance under the respective group action, whereas
tγ ≠ 0 indicates the absence of such a symmetry. Thus
the symmetric chimera state has an Si

2 × Sa
2 symmetry,

different from asymmetric chimera states with sole Si
2

symmetry. For a summary of the states discussed so far, see
Table I.
Calculating the symmetry detectives of the four coupled

optoelectronic oscillators reported in Ref. [7], we find that
also those states have an Si

2 × Sa
2 symmetry and can thus be

identified as symmetric chimera states.
In order to see if the states discussed above persist for

larger ensembles of oscillators and under the influence of
diffusion, we modify Eq. (3) by adding a diffusive coupling
to the ensemble,

∂tWðx; tÞ ¼Wðx; tÞ− ð1þ ic2ÞjWðx; tÞj2Wðx; tÞ

þ κ

�
1

L

Z
L
Wðx; tÞdx−Wðx; tÞ

�
þ ∂xxWðx; tÞ;

yielding a version of the complex Ginzburg-Landau equa-
tion with one spatial dimension x and linear global
coupling, indicated through the spatial integral [31,32].
Numerically solving this system on a domain of length
L ¼ 400 and periodic boundary conditions, one obtains
chaotic states resembling the asymmetric chimera [see
Fig. 4(a)] and the symmetric chimera [see Fig. 4(b)] for
different parameter values. Interestingly, in the spatially

extended system, the asymmetric chimera state of the
four-oscillator network conserves its low-dimensional
dynamics, manifesting itself as a three-cluster state with
temporally chaotic behavior. A comparison of time series
recorded at a position within each of the three clusters and
those shown in Fig. 2(b) is given in the Supplemental
Material and substantiates the correspondence of these
states [23]. In contrast, the symmetric chimera state trans-
forms into a spatiotemporal chimera state with a synchron-
ized, temporally chaotic cluster and a spatially incoherent,
temporally chaotic region, as can be seen in Fig. 4(b).
Corresponding time series of this apparently extensive
chimera states are again displayed together with its low-
dimensional counterparts in the Supplemental Material
[23]. Note that the α values at which those states arise
are slightly shifted compared to the corresponding states
observed in the four-oscillator system. This is an effect of
the diffusion and the different sizes of the clusters.
To summarize our results, we find different kinds of

symmetry-broken states in a system of four globally
coupled oscillators. In particular, we report chaotic states
with Si

2 symmetry, which we dub asymmetric chimera
states, states with Si

2 × Sa
2 symmetry, which we call

symmetric chimera states, and periodic orbits with
Si
2 × Ξ2 symmetry. The latter resemble weak chimeras as

defined for phase oscillators, whereas we could show that
the symmetric chimera states also exist in a system reported
in Ref. [7]. The discrimination based on the symmetries of

(a)

(b)

FIG. 4. Space-time plot of the (a) asymmetric chimera in the
spatially extended system with L ¼ 400, α ¼ 0.8304, β ¼ −0.7,
and c2 ¼ 2. The asymmetry arises through the two clusters with
small but different amplitudes [blueish and yellowish color in
(a)]. (b) Symmetric chimera in the spatially extended system with
L ¼ 400, α ¼ 0.828, β ¼ −0.7, and c2 ¼ 2. The color encodes
the absolute value of W.
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the incoherent oscillators may, as we hope, facilitate our
understanding of intricate dynamics, such as chimera states,
and may help to further classify them. In addition, such
minimal chimera states in small networks may provide
further insights into dynamics of larger, and even spatially
extended, systems of oscillators, which, as we have seen,
maintain certain properties of their minimal relatives. In
addition, our studies revealed apparent weaknesses in the
concept of chimeras in small systems, since some of their
spatially extended counterparts remain spatially synchron-
ized, exhibiting low-dimensional dynamics, while some
other develop extensive spatiotemporal incoherence. This
directly relates to the question of how the dynamics change
from small systems to large ensembles, which is, in our
opinion, an important and challenging question for future
research.
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