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We present the design of a passive, on-chip microwave circulator based on a ring of superconducting
tunnel junctions. We investigate two distinct physical realizations, based on Josephson junctions (JJs) or
quantum phase slip elements (QPS), with microwave ports coupled either capacitively (JJ) or inductively
(QPS) to the ring structure. A constant bias applied to the center of the ring provides an effective symmetry
breaking field, and no microwave or rf bias is required. We show that this design offers high isolation,
robustness against fabrication imperfections and bias fluctuations, and a bandwidth in excess of 500 MHz
for realistic device parameters.
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Microwave circulators [1,2] are ubiquitous microwave
circuit elements [3–5] for signal routing and signal or control
isolation. They are also key nonreciprocal elements for
realizing chiral quantum optics [6] with microwave photons
aswell as formicrowavephotondetection [7] and rectification
[8,9]. Commercial, passive circulators are wave-interference
devices based on the Faraday effect, which require permanent
magnets to break time-reversal symmetry. Size, and their
strong magnetic fields, make them unsuited to large-scale
integrationwith superconducting circuits, presenting a hurdle
for scaling up superconducting quantum technology.
With the exception of Koch et al. [10], most recent

approaches to this problem use active devices, based on
nonlinear mixing phenomena [11–14] or engineered inter-
play of driving and dissipation [15–17]. These proposals
rely on careful engineering of phase relations between
several input and drive fields. Using an rf-driven inductive
bridge circuit, Kerckhoff et al. [18] demonstrated band-
widths ∼100 MHz and tuneable center frequency [19,20].
Passive unidirectional devices based on quantum Hall edge
modes [21,22] have been demonstrated [23,24]. However,
there are challenges to fabricating these elements in a
superconducting circuit.
In this Letter, we provide a detailed theoretical analysis of a

fully passive, integrated superconducting microwave circu-
lator realized as a ring of tunnel junctions.We simultaneously
analyze two implementations of the system: one based on
Josephson junctions (JJs), which are in common use for
quantum information applications [25–27], and the other
based on quantumphase slip (QPS)wires [28].QPS junctions
are dual to JJs under the exchange of voltage and current [28],
and they have recently been employed to observe coherent
quantum phase slips [29] and as the basic building block of a
new type of flux qubit [30,31]. The underlying mathematical

description of these circuit elements is a precise duality;
however, they have different noise, fabrication, andgeometric
characteristics, so that the two implementations may be
apposite to different applications or materials.
The basic physics behind our circulator proposal is the

nonlocal phase accumulation in the Aharanov-Casher effect
for QPS devices, or its dual, the Aharanov-Bohm effect for
JJ devices. Both effects arise from the nonlocal topological
mutual phase that charge and flux quanta acquire as they
are transported around one another.
The operation of our proposal is similar to that of Koch

et al. [10], but with a number of significant theoretical and
practical differences. It does not require extraneous reso-
nators in the devices, nor any active microwave or rf
circuitry, both of which simplify and substantially shrink
the circuit. Further, we calculate scattering matrices in a
fully dynamic picture that includes the internal degrees of
freedom of the circulator without relying on an approxi-
mate perturbative treatment. Going beyond a linearized,
harmonic approximation enables us to quantify the per-
formance of the device at high coupling energies and with
high fluxes, both of which preclude perturbative treatments.
We show that with experimentally reasonable parameters,
passive on-chip circulators can be built with bandwidths
∼500 MHz, and with moderate photon flux.
Hamiltonian.—To facilitate this dual description, we

refer to the diagram in the center of Fig. 1. External ports
(numbered j ¼ 1 to 3) are coupled to “segments” (circles)
arranged in a ring, with canonical “momenta” nj. The
segments of the ring are mutually coupled through tunnel-
ing elements (squares), characterized by a tunneling energy
ET and a “mass” term mT . The ring of segments encircle
a central bias, X, providing a time-reversal-symmetry-
breaking (effective) magnetic field.

PHYSICAL REVIEW LETTERS 120, 213602 (2018)

0031-9007=18=120(21)=213602(6) 213602-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.213602&domain=pdf&date_stamp=2018-05-25
https://doi.org/10.1103/PhysRevLett.120.213602
https://doi.org/10.1103/PhysRevLett.120.213602
https://doi.org/10.1103/PhysRevLett.120.213602
https://doi.org/10.1103/PhysRevLett.120.213602


Physically, in the QPS implementation, the segment
degrees of freedom correspond to fluxes threading the
spokes of the ring structure, illustrated on the left of Fig. 1;
i.e., nj → ϕj=Φ0, and the central bias is a charge bias,
X → Qx=ð2eÞ. The coupling to external degrees of freedom
is realized via a coupling inductance LC with an associated
coupling mass term mC. Additionally, each segment has a
parasitic inductance LG, corresponding to a final mass term
mG in the general description. Conversely, in the JJ
implementation, the segment degrees of freedom corre-
spond to charges at the nodes between two Josephson
junctions, as illustrated on the right of Fig. 1; i.e.,
nj → qj=ð2eÞ, and the central bias is a flux bias,
X → Φx=Φ0. Coupling to the ring is realized capacitively,
mC ¼ CC, and each node has an additional parasitic
capacitance mG ¼ CG. In both cases, eigenmodes of the
ring have flux or charge currents circulating around the
ring, which acquire phases dependent on the central bias X,
through the Aharanov-Casher or Aharanov-Bohm effect
[32,33]. Interference between different ring excitations
leads to the nonreciprocity required for circulation.
The quantized Hamiltonian for the ring is [10,34]

HRing ¼
p2
0

2
ðn̂ − NSÞM−1ðn̂ − NSÞ

− ET

X
j

cos ½2πðx̂jþ1 − x̂j − X=3Þ�; ð1Þ

where n̂ ¼ fn̂1; n̂2; n̂3g are dimensionless dynamical vari-

ables, Nn ¼ fNð1Þ
S ; Nð2Þ

S ; Nð3Þ
S g are the classical bias offsets

for each segment, M ¼ mΣ13 −mT is the mass tensor,
and x̂j is the conjugate variable to n̂j; i.e., ½n̂j; x̂j� ¼ i.
mΣ ¼ 3mT þmC þmG represents an effective total mass
of excitations in the ring and provides the scale of the
kinetic energy term. Here p0 plays the role of zero-point
“momentum” in the Hamiltonian and depends on the
physical implementation chosen: for QPS devices, p0 ¼
Φ0 is the superconducting flux quantum; for JJ devices,
p0 ¼ 2e is the Cooper pair charge. Equation (1) assumes a
rotationally symmetric ring, where all mass and tunneling
energies are equal. Generalizing to disordered structures
simply changes the mass tensor and the tunneling energies,
cf. S.1 and S.5 of the Supplemental Material [35].
We change from local to collective coordinates:

n̂10 ¼ n̂1, n̂20 ¼ −n̂2, and n̂30 ¼ n̂1 þ n̂2 þ n̂3 ¼ N0. The
latter is the conserved total charge of the ring (since
∂H=∂x̂03 ¼ 0), so that the Hamiltonian becomes

HRing ¼
p2
0

mΣ
ððn̂10 − ðN0 þ Nð1Þ

S − Nð2Þ
S Þ=2Þ2

þ ðn̂20 þ ðN0 þ Nð2Þ
S − Nð3Þ

S Þ=2Þ2 − n̂10n̂20Þ
− ETðcos ð2πðx01 − X=3ÞÞ þ cos ð2πðx02 − X=3ÞÞ
þ cos ð2πðx01 þ x02 þ X=3ÞÞÞ: ð2Þ

The value of N0 is fixed to its ground-state value by the
choice of segment bias parameters NS [10].
The ring couples to external waveguides at each port,

describedby theHamiltonianHWG ¼ P
k;j ωkâ

†
k;jâk;j,where

k labels waveguide modes and j labels the port number.
Details on the derivation ofHRing and thewaveguide coupling
are given in S.1 of the Supplemental Material [35].
Scattering calculations.—For the purposes of this Letter,

we assume coherent field inputs at each port, and we
quantify the scattering of waveguide modes from the ring
structure using the SLH formalism [8,36], which allows us
to calculate output field amplitudes and photon fluxes. We
note that the SLH formalism can be adapted to nonclassical
input fields [37–39]. Assuming single mode input, the time
evolution of the density matrix for the open ring, ρ, satisfies
the master equation

_ρ ¼ −i½HSLH; ρ� þ
X
j

D½bj�ρ; ð3Þ

with HSLH ¼ HRing þHD and

HD ¼ −
i
2

X
j

gkðαje−iωktqðjÞþ þ H:c:Þ; ð4Þ

bj ¼ gkqðjÞ− þ αje−iωkt1; ð5Þ

FIG. 1. Center: Schematic representation of the circulator,
consisting of three ports connected via coupling elements to
the numbered nodes of the ring to the coordinate nj associated
with node j. A central ring bias X is conjugate to nj. Nodes of the
ring are mutually coupled by tunneling elements with tunneling

energy EðkÞ
T and “mass” mðkÞ

T . Notionally, the tunneling elements
are identical. Differences lead to imperfect operation. Left: The
QPS implementation of the scheme using flux tunneling and
capacitive bias. Here nj → ϕj=Φ0 are coupled inductively to the

external lines, EðkÞ
T → EðkÞ

S is the phase slip energy,mðkÞ
T ¼ LðaÞ

S is
the QPS inductance, and X → Qx=ð2eÞ is the linked charge.
Right: The JJ implementation of the scheme relying on charge
tunneling and inductive bias. Then nj → qj=ð2eÞ is coupled

capacitively to the external lines, EðkÞ
T → EðkÞ

J is the Josephson

energy, mðkÞ
T ¼ CðkÞ

J is the JJ capacitance, and X → Φx=Φ0 is the
linked flux.
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where αj is the field amplitude of the incoming signal
in transmission line j at frequency ωk. The frequency-
dependent coupling strengths gk are calculated in S.1 of the
Supplemental Material [35] and depend on the physical
realization. The outgoing field amplitudes β and photon
fluxes B into port j are then given by

βj ¼ Trfbjρg; Bj ¼ Trfb†jbjρg: ð6Þ

To calculate scattering dynamics, we first diagonalize
HRing in a truncated Hilbert space of the dynamical
variables, n̂01;2. Retaining eigenmodes with eigen-numbers
n01;2 ¼ −4;−3;…; 4 is sufficient to accurately describe
low-energy ring modes, fjE0i; jE1i; jE2i;…g. We then
further truncate the ring Hilbert space to the lowest l
modes for scattering calculations. Typically, l ¼ 3 to 5 is
sufficient for calculating scattering matrices, due to the
strongly anharmonic spectrum of the ring. Apart from
controlled truncations, we do not make secular or other
approximations in HRing.
We characterize circulation using the steady-state pho-

ton-flux scattering matrix S, which relates the input
and output photon fluxes in each port, B ¼ SA, with
the vector of input photon fluxes A ¼ fjα1j2; jα2j2; jα3j2g.
The scattering matrix elements are given by
Sij ¼ limt→∞BiðtÞ=jαjj2 ≥ 0. For an ideal, passive, three-
port clockwise circulator, we expect

S ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA: ð7Þ

The scattering of photons from the ring is mediated by
excitations of the ring modes. Notionally, the central bias is
tuned so that the relevant ring modes are antidegenerate
with respect to the signal frequency ωk; i.e., for any ring
mode with eigenenergy ωk þ Er, there is a dual mode with
eigenenergy ωk − Er. At this tuning point, the scattering
matrix becomes maximally nonreciprocal, leading to per-
fect circulation. Here, we choose the bias point so that
circulation proceeds clockwise. We note that there is
another bias point where the circulation is reversed; see
S.3 of the Supplemental Material [35].
Here, we choose circuit parameters that are feasible

for both QPS and JJ implementations, as detailed in S.3 of
the Supplemental Material [35]. The tunneling energy is
ET=ℏ ¼ 15 GHz, and the kinetic energy term EΣ=ℏ ¼
7.80 GHz. The segments are biased equally with NðkÞ

S ¼
NS;opt ¼ 1=3, such that the conserved charge of the ground
state is N0 ¼ 1. For this choice, we find perfect clockwise
circulation at a central bias of Xopt ¼ 0.356 and with an
input signal frequency of ωopt ¼ 12.293 GHz. At this
optimal point, the coupling strength to the waveguides is

gopt ¼ 1.832 GHz. This value is large, but experimentally
feasible [40,41]. Since gopt ≪ ωopt, the rotating wave
approximation implicit in the SLH formalism is still
reasonable. The circulation characteristics at different input
frequencies ωin can be found by simple scaling of all
energies in the problem by the desired ratio ωin=ωopt.
Bandwidth and nonlinearity.—Figure 2 shows the spectral

response of the ring to a weak coherent field incident on port
1, with ideal operating parameters for clockwise circulation.
We achieve an insertion loss approaching −20 dB with
reflection and isolation both below −15 dB. The perfor-
mance of the circulator degrades to −10 dB at detunings of
∼� 250 MHz, so that the −10 dB bandwidth exceeds
500 MHz.
The ring structure is realized as a coherent, nonlinear

superconducting device, so it has an anharmonic spectrum
and will saturate at sufficiently high powers. Since we
diagonalize HRing nonperturbatively, the SLH formalism
enables us to quantify the nonlinear response of the system
[36] to continuous incident fields. Figure 3 shows the
normalized output flux of the circulator versus input
powers. The 1 dB compression point, where performance
degrades by 1 dB relative to the ideal, linear case is at
−156 dBm, corresponding to ∼105 incident photons per

FIG. 2. Scattering parameters in dB as a function of detuning
from the optimal signal frequency, δω ¼ ωk − ωopt. Vertical
dashed lines indicate the positions of excited states of the ring,
which get transiently excited in the scattering process (see S.4 of
the Supplemental Material [35]). The bandwidth at the −10 dB
point is > 500 MHz, as indicated by the grey shaded areas.

FIG. 3. S-matrix elements (in dB) as a function of input power
at the optimal signal frequency and central bias, demonstrating
the strong nonlinearity of the ring.
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second. Useful circulation extends much further in power,
with 10 dB of isolation at −140 dBm.
For transient incident fields, e.g., for a Fock-state with

some specific temporal envelope, we expect that dispersion
within the transmission window will induce envelope
distortion, analogous to Refs. [7,38].
Noise and disorder.—As in other circulator proposals,

for ideal operation our scheme requires precise control of
parameters. In our design this is the central bias, X, and

the offset biases of each segment NðjÞ
S , as well as precise

fabrication of the nodes, so that the tunneling and mass
terms are identical. In reality, all of these are subject to
variation—either drifts in the bias parameters due to
environmental noise, or fabrication imperfections, which
are built into the device.
Analyzing the effect of such imperfections, we focus on

the quasistatic noise case, where the dynamical timescales
of the noise processes are slower than the scattering. For the
high-bandwidth devices we are considering here, and at
moderately low input powers, the ring will stay predomi-
nantly in its ground state at all times during operation so
that we can neglect decoherence due to the nonradiative
decay of ring states. For the strong loss case, where
nonradiative decay dominates over the coupling to the
waveguides, circulation suffers as photons are lost to the
environment. Since nonradiative rates of modern super-
conducting devices are much smaller than the timescale of
circulation defined by the bandwidth, we neglect such
processes in the following. Additionally, the eigenenergies
of all ring states for the parameters chosen are > 5 GHz
and thus well above usual operational temperatures of
superconducting quantum circuits ∼10 mK ≈ 200 MHz.
We now quantify the effect of quasistatic variations away
from ideality for ring parameters.
The central bias controls the degree of nonreciprocity

through changes in the eigenstates of the ring. Figure 4
shows the variation of S31 as the central bias is tuned away

from the optimal point Xopt. Evidently, good circulation is
maintained as long as fluctuations in the central bias are
kept below ∼1%. Also shown are bars (bottom left)
indicating typical fluctuations in the central bias for the
two implementations we consider. In this case, flux noise in
the JJ implementation is exceedingly small, ∼10−4Φ0 [42],
whereas charge noise in the QPS implementation is at the
10−2ð2eÞ level [43].
Figure 5 shows contours of S31 as two of the three

segment biases, Nð1;2Þ
S , are varied by�0.1p0. Typical scales

for slow variations are shown in the error disks at bottom
left. In this case, charge noise in the JJ implementation is at
the 10−2ð2eÞ level, whereas flux bias noise in the QPS
implementation is not visible on this scale. In either case,
the system is relatively insensitive at the scale of these
variations. We note that variation of the third segment bias,

Nð3Þ
S , is quantitatively similar to variations in Nð2Þ

S .
Lastly, Fig. 6 shows the effect of fabrication imperfec-

tions on two of the tunneling energies, Eða;bÞ
T . These are

likely to be more variable than the mass terms, since the
tunneling is exponentially dependent on device geometry.
We note that when calculating scattering with imperfect
tunnel junctions, optimal circulation occurs at different bias
points for each realization of disorder. Since fabrication
disorder is static, this type of variation can be taken into
account at initial tuneup of the devices, and each point in
Fig. 6 represents an independent optimization of the central

bias X and the segment biases NðkÞ
S . Independent variations

of the segment biases can partially counteract the asym-
metry in junction parameters, evident from the large plateau
in Fig. 6. Historically, more effort has been spent optimiz-
ing JJ fabrication than QPS devices, so JJ parameters are
currently under better experimental control. At the bottom

FIG. 4. S-matrix elements as a function of the variation in the
central bias parameter, δX ¼ X − Xopt (in dB). For the JJ ring,
X ¼ ΦX=Φ0; for the QPS ring, X ¼ QX=ð2eÞ. The notional
output is to port 3; outputs to other ports arise from bias
variations. The bars in the left of the figure indicate typical
variation in the central bias for a JJ-based implementation due to
flux noise [42], and a QPS-based implementation due to charge
noise [43].

FIG. 5. Effect of deviations in the node bias on the forward
transmittance 1 − S31 (in dB), with δNðkÞ

S ¼ NðkÞ
S − NS;opt. The

disks at the left of the diagram indicate the scale of typical slow
bias fluctuations in JJ devices due to charge noise [43] and in
QPS devices due to flux noise [42].
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left, disks indicate a typical scale for the reproducibility of
the tunneling energy for JJ, ∼1%, and QPS, ∼10%, when
comparing junctions fabricated simultaneously on the same
chip. We have also simulated the effect of disorder in other
Hamiltonian parameters and find qualitatively similar
results to Fig. 5, as described in S.5 of the Supplemental
Material [35].
In conclusion, we have shown that passive microwave

circulators can feasibly be built from a ring of super-
conducting tunnel junctions. The circuits can be integrated
on chip with current fabrication technology and do not
require any additional microwave or rf circuitry. The
operating bandwidth is limited by the achievable wave-
guide coupling strength and can reach > 500 MHz for
reasonable parameters. Due to the anharmonic spectrum of
the central ring structure, nonlinearities are significant and
the scattering matrix is strongly power dependent. The dual
implementations we propose are reasonably insensitive to
disorder and noise in bias charges. At their current state of
development, the fabrication of QPS wires is less repeat-
able than JJ’s; however, there may be applications for each
implementation.
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