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We propose a spatiotemporal quench protocol that allows for the fast preparation of ground states of
gapless models with Lorentz invariance. Assuming the system initially resides in the ground state of a
corresponding massive model, we show that a superluminally moving “front” that locally quenches the
mass, leaves behind it (in space) a state arbitrarily close to the ground state of the gapless model.
Importantly, our protocol takes time OðLÞ to produce the ground state of a system of size ∼Ld (d spatial
dimensions), while a fully adiabatic protocol requires time ∼OðL2Þ to produce a state with exponential
accuracy in L. The physics of the dynamical problem can be understood in terms of relativistic rarefaction
of excitations generated by the mass front. We provide proof of concept by solving the proposed quench
exactly for a system of free bosons in arbitrary dimensions, and for free fermions in d ¼ 1. We discuss the
role of interactions and UV effects on the free-theory idealization, before numerically illustrating the
usefulness of the approach via simulations on the quantum Heisenberg spin chain.
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Introduction.—A central challenge in harnessing the
power of artificial quantum matter—for quantum comput-
ing and other technological purposes or for theoretical
investigation—is that of quantum state preparation. While
much progress has been made in engineering extremely
isolated quantum systems—ultracold atoms in optical
lattices [1–4] or traps [5,6], nitrogen vacancy centers
[7–12], ion traps [13–15], superconducting qubit structures
[16–19]—as these systems grow more complex, it becomes
harder to devise equally elaborate tools to manipulate them
while maintaining isolation from sources of decoherence. It
is thus important to find theoretical answers to how
efficiently specific quantum states can be prepared, and
the minimum set of knobs required for this purpose.
In this regard, adiabatic evolution has served as a basis for

many investigations (cf. Ref. [20]). The idea here is to
prepare the system in an eigenstate of a Hamiltonian that is
easily accessible and subsequently tune the Hamiltonian
slowly to evolve this eigenstate into the target state. The
limitation of this approach is speed; to avoid exciting the
system in the process, the time taken must be of the order of
the inverse square of the smallest instantaneous spectral gap
between the target and excited states, a quantity that diverges
in the thermodynamic limit for many systems of interest.
To achieve faster preparation, recent work has proposed

engineering counterdiabatic drives [21–23] that counter the
production of excitations during adiabatic evolution, or
more radically, introducing “optimum-control” protocols
[24–28] (including “bang-bang” protocols [29–32]) that
entirely dispense with the adiabatic ansatz. As of now, a
transparent theoretical prescription for diabatic protocols
exists only for finite-size systems and how these insights

may be extended to thermodynamically large systems is
unclear. Another body of work [33,34] has proposed spatial
quenches wherein a large chunk of the system serves as a
bath to remove entropy from the subsystem of interest.
In this Letter, we provide a novel example of a diabatic

protocol for preparing the ground state of a class of gapless
systems—those with emergent Lorentz invariance—start-
ing from the ground state of a corresponding model with an
additional term that opens a gap. Such models naturally
arise in the low-energy description of various condensed-
matter systems, including one-dimensional quantum gases
[35] and the Hubbard model at half-filling [36] in the strong
coupling limit. We assume that the ground state of the
massive model is easier to prepare due to the presence of a
gap. Our approach differs from approaches inspired by the
adiabatic ansatz in that it leads to generation of excitations;
instead, our strategy is to invoke the symmetry of the model
to “shepherd” excitations in a way that leaves a thermo-
dynamically large region completely unexcited.
Specifically, we consider performing a spatiotemporal

quench [37,38] wherein the local mass or gap is tuned to
zero—abruptly, or on some timescale τ—along a super-
luminal trajectory x ¼ vst as illustrated in Fig. 1. Here
vs > c, where c is the speed of “light” in the emergent
critical model. The quench front then serves as a source of
excitations that emanate from the point x ¼ vst, and travel
onwards in all directions. Because of the motion of the
front, right-moving excitations get blueshifted and are
populated at higher energies, while left movers get red-
shifted and carry less energy. As the quench speed
vs → cþ, the associated Doppler factor diverges and the
left-moving modes are left entirely unpopulated.
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In the one-dimensional case, for noninteracting models,
this chirality has a huge consequence: the region x < ct is
populated only by left-moving excitations (right movers
move past into the region x ∈ ½ct; vst�) and is thus cold.
These notions apply in higher dimensions albeit with minor
modifications. We provide proof of concept with an exact
solution of the quench for free relativistic bosons (in
dimension d ≥ 1) and fermions (in d ¼ 1) for the locally
instantaneous case (τ ¼ 0, finite vs). Our protocol takes
time ∼OðL=cÞ to produce a state arbitrarily close to the
ground state of the massless theory. We show that a
spatially uniform, adiabatic protocol (vs ¼ ∞, finite τ)
by contrast produces a state exponentially close to the
ground state in time ∼OðL2Þ, parametrically slower than
our protocol.
Next, we describe how our results apply to a general

setting with interactions, band-curvature and ultraviolet
effects. We first note that the total energy produced in the
quench is, in fact, independent of vs when τ ¼ 0—thus,
cooling occurs purely due to spatial reorganization of the
released energy into hot and cold regions, an effect that can
be reversed by interactions favoring homogenization. It
also calls into question our use of effective low-energy
descriptions particularly in the limit vs → c where the
whole energy is localized in a vanishingly small region. We
argue that introducing a finite τ (that does not scale as L)
resolves these issues: a new timescale τ0 ¼ γsτ emerges and
controls the adiabaticity of the process. This timescale
diverges in the limit vs → c as per the Lorentz factor
γs ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=v2s

p
. Thus, the superluminal front enhances

the timescale τ that introduces adiabaticity. We validate the
effectiveness of our protocol via numerical simulations on
an antiferromagnetic Heisenberg chain with a gap induced
by a Néel field, as well as a classical model of phonons.
At the time of writing, we became aware of a similar

proposal [39,40] in the Kibble-Zurek literature wherein a
critical velocity for front propagation was proposed using
scaling arguments. Our work demonstrates why this critical
velocity is exactly c and the importance of relativistic
effects in engendering perfect cooling. Moreover, Ref. [39]
considers a transcritical protocol (transforming one gapped
state into another, passing through a critical point) as
opposed to our work focusing on the creation of the critical

ground state. A description of scaling properties of corre-
lations in such inhomogeneous protocols, in the spirit of
Ref. [41] will be discussed in forthcoming work.
Model.—We study the following class of quench models

described by the Lagrangian density Lb:

Lb ¼ ∂μϕ · ∂μϕ −m2ϕ2f½ðx − vstÞ=ðvsτÞ�; ð1Þ
with fðxÞ ¼ 1

2
½1þ tanhðxÞ�. We set c≡ 1; ∂μ ≡ ð∂t;∇Þ

and ∂μ ≡ ð∂t;−∇Þ. The function f sets the local mass to m
everywhere at t ¼ −∞ and 0 at t ¼ ∞. The fields live in a
box of linear dimension L and satisfy usual commutation
relations [42]. We assume that the system is initially in the
ground state of the massive theory.
The massless Lagrangian may describe the low-energy

physics of a range of gapless one-dimensional systems,
including many spin [43], boson, and fermion models [35],
or in two dimensions, spin waves in the Hubbard model at
half-filling [36], etc. A local gap in spin models may be
opened by applying local magnetic fields or dimerization.
Solution for τ ¼ 0, finite vs.—Here fðxÞ ¼ ΘðxÞ; the

quench takes time tq¼L=vs from start to finish. The field
operator at all times t<x=vs can bewritten in terms of amode
expansion ϕðr; t < x=vsÞ ¼

P
n½bnvnðx; tÞ þ b†nv�nðx; tÞ�,

where vn are solutions to the massive Klein-Gordon equa-
tions, and bn are bosonic operators associated with these
modes. We work in the Heisenberg picture, fixing the initial
state to j0i defined by the condition bnj0i ¼ 0 ∀ n. The
condition vs > c ensures that no perturbations (traveling
at speed c) due to the quench affect the space-time region
t < x=vs and the mode expansion is valid.
For times t > x=vs, the field operator evolves as per

the massless solutions un: ϕðr;t>x=vsÞ¼
P

n½bnγnðr;tÞþ
b†nγ�nðr;tÞ�, where γn ¼

P
m½αn;mum þ βn;mu�m� is deter-

mined by matching boundary conditions, that is,
Dγnðr;t¼x=vsÞ¼Dvnðr;t¼x=vsÞ with D∈f1;∂t;∂x;∇⊥g.
The “Bogoliubov” coefficients αn;m and βn;m can be found
by evaluating appropriate Klein-Gordon norms, as described
in Ref. [44]. All correlations subsequent to the quench
can be evaluated using the above mode expansion, and
applying Wick’s theorem on the state j0 >.
Chiral emanation.—The energy density after the

quench can be evaluated as ϵðr; tÞ ¼ P
nj∇γnj2 þ j∂tγnj2≈P

kωkNkjukðr; tÞj2. The approximation is valid in the
infinite size limit, neglecting time-dependent terms involv-
ing products of wave functions with two different momenta
or terms of the form uk · u−k ∼ e−2iωkt, which rapidly
dephase. The population of modes is dependent on the
direction k̂ of the mode with momentum k ¼ kk̂:

Nk ¼
ðΩηðθÞk − ωηðθÞkÞ2
4ΩηðθÞkωηðθÞk

→
ηðθÞωk≪m m

4ηðθÞωk
; ð2Þ

where Ωk≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p
, ωk≡k and ηðθÞ¼γsð1−uscosθÞ

where us ¼ 1=vs < 1. θ is the angle between k̂ and x̂,

FIG. 1. The protocol: the local mass is tuned to zero along a
front moving at superluminal speed vs > c. As vs → cþ, right-
moving waves form a shockwave carrying all the energy released
in the quench, while the region x < ct, populated only by
infinitely redshifted left-moving waves, is left unexcited.
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ranging from 0 for right movers to π for left movers. For the
uniform quench (vs ¼ ∞) we note that ηðθÞ ¼ 1. For
vs → cþ, ηð0Þ≡ 1=η0 → 0, while ηðπÞ ¼ η0 → ∞; con-
sequently, the energy Nkωk carried by left-moving waves
vanishes ∀k in this limit. In d > 1, most of the emission
occurs in directions perpendicular to the motion of the
front. Cooling in higher dimensions is based on the fact
ηðπ=2Þ ¼ γs also diverges in this limit vs → cþ; this
Doppler shift of orthogonally emitted radiation is a purely
relativistic effect.
Energy density after quench.—To calculate the space and

time dependence of the energy density, slow time-dependent
correlations cannot be neglected. Their effect, however, can
be captured using a simple physical picture of “heat waves”
as described in Ref. [38] for d ¼ 1, but which we find to be
valid generally. In particular, excitations emanate from the
quench front, carrying an energyωkNk, which depends on k̂.
The energy density at the end of the quench at any point
ϵthðxÞ is given by the average energy of all excitations
emanating from the quench front and ending at this point.
These ideas are empirically verified in Fig. 1 of Ref. [44].
Here we focus on the aspect of “cooling” and calculate the
energy density at the end of the quench. First, note that
the energy carried bywaves emitted in theθ direction is given
by ϵθ ∝

R
m=ηðθÞ kd−1dkωkNk ∝ ðm=4Þ½1=ηðθÞdþ1�ð1=Ld

mÞ,
where Ld

m ¼ ðm=cÞd has dimensions of volume. Higher
momenta modes yield a parametrically similar contribution.
(UV divergences occur for d ≥ 3 but these are eliminated
using finite τ.) Summing the contribution from these chiral
waves yields in d ¼ 1, ϵthðxÞ¼ð1=η20ÞΘð−x−L=2þctqÞþ
1
2
½η20þð1=η20Þ�ΘðxþL=2−ctqÞ; thus, the energy density goes
to zero for x < L=2 in the limit vs → cþ and all the energy is
singularly located at x ¼ L=2. Similarly, for d > 1, using the
picture inFig. 2(a),we find (seeRef. [44] for amore elaborate
derivation)

ϵthðxÞ ¼
R
π
θx
sind−2θϵθ þ

R
π
π−θx sin

d−2θϵθR
π
0 dθsind−2θ

;

θx ¼ Refcos−1½ðxþ L=2Þ=ðusLÞ�g; ð3Þ

where sind−2 θ is the appropriate angular measure in dimen-
sion d > 1. Some features of ϵthðxÞ in different dimensions
are shown in Fig. 2. Importantly, a thermodynamically
relevant region is seen to become infinitely cold for vs → cþ.
Infinite accuracy.—The above discussion assumed the

limit L → ∞ to find the energy of excitations emanated in
different directions but the distinction between “left” and
“right” is meaningless at momenta ∼1=L. The population
of these modes is instead found to scale as Nk ¼ ðm=4γsÞ.
Importantly, (a) this population also goes to zero as
vs → cþ, and (b) it can be shown that this result is
unaffected by finite L (a technical discussion and numerical
confirmation is presented in Ref. [44]). Thus, the popula-
tion of the lowest momentum modes can be tuned arbi-
trarily close to zero in our protocol.
Adiabatic cooling: Solution for finite τ, vs ¼ ∞.—In this

case the quench occurs uniformly in space, but on a
timescale τ. The time-dependent equations of motion can
be solved exactly for fixed momenta to find two complete
sets of modes uadk and vadk that behave like the massless and
massive modes uk and vk at t ¼ ∞ and t ¼ −∞ respec-
tively—for details, see Sec. 3.4 of Ref. [49], where an
analogous problem is solved for fields evolving in a time-
dependent metric. Thus, the initial state can be described as
a vacuum of the quanta badk of the modes vadk . The
population of the quanta aadk of the modes uadk , ha†adk aadk i,
can be found exactly once βk in aadk ¼ αkbadk − βkb

†ad
ð−kx;k⊥Þ is

determined. We find

Nad
k ¼ jβkj2 ¼

sinh2( π
2
τðΩk − ωkÞ)

sinh ðπτωkÞ sinh ðπτΩkÞ
→

mτ≫1

k>τ−1
e−2πωkτ: ð4Þ

One can easily check that to obtain an energy density
ϵðxÞ ∼ e−L, the time required scales as τad ∼OðL2Þ. Thus,
our proposed superluminal protocol that takes time ∼OðLÞ
is more efficient than the adiabatic protocol.
Bosons vs fermions.—The fundamental conclusions

above are unchanged for relativistic theories with
different statistics. We examine this in the context of free

(a) (b) (c)

FIG. 2. (a) The energy density is determined by tracing the excitations impending on it to the quench front. At the end of the quench,
ϵthðxÞ is uniform in the region x > −L=2þ ctq. (b) ϵthðxÞ for us ¼ 0.5 for various d. For d > 1, the curve is smooth for
x ≤ −L=2þ ctq ¼ 0. (c) ϵthðxÞ in d ¼ 2 for us ¼ f0; 0.4; 0.6; 0.8; 0.9g; inset is minxϵthðxÞ as a function of us for d ¼ f1; 2; 3g.
The hot region grows slimmer and the transition into the cold region grows sharper as us → 1 in any dimension.
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fermions in d ¼ 1, governed by the action Lf ¼ iψ̄∂μγ
μψ−

mψ̄ψf½ðx − vstÞ=ðvsτÞ�. The results for τ ¼ 0, finite vs are
obtained analogously to the bosonic solution; see Ref. [44].
We find occupation numbers

NF
k ¼ ΩηðθÞk − ωηðθÞk

2ΩηðθÞk
→
ηðθÞk≪m 1

2
: ð5Þ

Thus, for fermions, excitations are populated up to a
“chemical potential” that is Doppler shifted ∼m=ηðθÞ as
opposed to the bosonic case where the population at low
momenta can be captured by a Doppler-shifted effective
temperature [38,50].
Realistic models: Combination of adiabatic and

superluminal cooling.—For τ ¼ 0, cooling occurs due to
spatial separation of cold and hot regions—one can verify
that

R
dxϵthðx; tqÞ ¼ 1, and thus independent of vs. Thus,

one anticipates that interactions, which lead to a homog-
enization of the energy density, spoil the cooling effect. We
now provide arguments showing how the introduction of
finite τ resolves this issue. First, we note that the super-
luminal quench can be analyzed in a Lorentz-boosted frame
moving at speed us ¼ 1=vs < 1. In this frame, the quench
occurs uniformly in space. This analogy is clearly useful for
τ ¼ 0: one may recover the result of the superluminal
quench, Eq. (2), using the uniform, adiabatic quench result
in Eq. (4) and Doppler shifting the momenta to obtain
population of modes in the laboratory frame.
For large momenta k ≫ 1=L, we can ignore the breaking

of Lorentz symmetry by the walls, and use the above
intuition to find the population of modes at finite τ and vs.
In the boosted frame, the mass term transforms as
f½ðx − vstÞ=ðvsτÞ� → f½−t0=τ0�; thus, τ0 ¼ γsτ emerges as
the effective timescale for the quench in the boosted frame.
Doppler shifting back into the laboratory frame, we find
that the population of modes begins to decay rapidly for

ηðθÞωk ≪ τ−1=γs. Thus, the cutoff determining the direc-
tion-dependent energy density ϵθ is now set by m=γs for
τ−1 ≈m instead of m [see Eq. (2)]. This implies that the
average energy density ϵssþad ¼ ϵss=γds goes to zero in the
limit vs → cþ for finite τ, suggesting that the protocol can
be useful for preparing the ground state of interacting
models.
UV effects.—The linear dispersion ωk ¼ ck is crucial to

the Doppler physics we rely on for our diabatic protocol.
Beyond a certain energy scale (for instance, set by the
lattice), this assumption breaks down and UVmodes have a
k-dependent group velocity vgðkÞ < c. The effective cool-
ing or heating factor for these modes can be estimated [51]

as before with γsðkÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðvgðkÞ=vsÞ2

q
—this is going

to deviate minimally from 1 when vgðkÞ is much smaller
than c. UV modes are thus excited in a nonchiral way. In
the event that the UV scale Λ < m=ηðθÞ and τ0−1=ηðθÞ, we
expect the energy density ϵθ ∼ 1=ηðθÞ, which is yet differ-
ent from previous cases. In d ¼ 1, this predicts a cold
region with energy density m=4η0 separated from a hot
region with energy density γsm=4; the average energy
density is m=4γs.
We next describe simulations of the proposed quench on

a classical model of noninteracting phonons to study UV
physics, and subsequently study its efficacy on an interact-
ing model—the Heisenberg spin chain.
Classical phonons.—We study the classical system with

Hamiltonian H ¼ 1
2

P
iðxi − xiþ1Þ2 þ v2i þm2x2i , where m

is quenched as per Eq. (1). Each mode is given an initial
energy ϵk ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4 sin2ðk=2Þ

p
akin to the vacuum point

energy in an equivalent quantum model. The simulations
allow us to verify some expectations for the role of τ and vs
in a noninteracting setting; see Fig. 3(a).
Heisenberg chain.—We perform time-dependent DMRG

simulations (using iTensor [52]) of the antiferromagnetic

(a) (b) (c)

FIG. 3. (a) Energy per phonon mode at fixed momentum k. At large vs, all modes are uniformly excited. As vs → 1, low energy
“critical” modes are cooled, but UV modes remain unaffected. UV mode population is controlled by increasing τ. (b) TDMRG
simulation of the quench in a Heisenberg chain for hz ¼ 3, τ ¼ 2, and vs=c ¼ 3.2=π. The initial state has an energy ∼20% of bandwidth
above ground state while the final energy density is ∼0.62%. A linear ramp yields a state that is 3 times hotter in the same time.
(c) Energy density in the middle half of the chain at tq is seen to lie below ϵð0Þ=γs and follows ϵð0Þ=η0 for a large range of vs. Here,
hz ¼ 3, τ ¼ 0.1, c ¼ π=2.
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Heisenberg chain with alternating local fields setting the
mass. A two-dimensional version of this model applies to
the low-energy physics of the half-filled Fermi-Hubbard
model at large Hubbard U, currently of interest in several
ultracold atom experiments. The Hamiltonian reads
H ¼ J

P
xSx · Sxþ1 þ

P
xð−1Þxhðx; tÞ, where the magnetic

field hðx; tÞ is eliminated from the center outward accord-
ing to the functional form set by hzfðxÞ as in Eq. (1).
In the noninteracting assumption, the middle region x ∈
½L=2 − ct; L=2þ ct� is illuminated by only cold excitations
moving against the front, while both hot (moving with the
front) and cold excitations inundate space elsewhere; these
“heat waves” are also observed in the Heisenberg chain (see
Ref. [44]) although boundaries are blurred due to inter-
actions. The cooling efficacy of the protocol is illustrated in
Fig. 3(b) for vs=c ≈ 1 and τ ¼ 2; in Fig. 3(c) we examine
the energy density in the middle half of the chain at the end
of the quench and quantitatively verify it lies below the
expected energy density ∼ϵð0Þ=γs (either at small or large
τ, as per the above arguments) for the complete chain.
Summary and conclusions.—In this work, we provided a

nonadiabatic method for preparing the ground states of
models with Lorentz symmetry. An exact analysis was
presented for free relativistic bosons and fermions while
analytical arguments and numerical simulations were used
to examine the usefulness of our approach for realistic
systems with UV effects and interactions. Our protocol
should be accessible in experiments in a wide range of
setups hosting artificial quantum matter [14,53], particu-
larly ultracold atoms [1,2,54,55], where an adapted version
may serve as an alternate route to preparation of the ground
state of the Hubbard model at half-filling in the strong-
coupling limit.
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