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The dynamics of bosons in generic multimode systems, such as Bose-Hubbard models, are not only
determined by interactions among the particles, but also by their mutual indistinguishability manifested in
many-particle interference. We introduce a measure of indistinguishability for Fock states of bosons whose
mutual distinguishability is controlled by an internal degree of freedom. We demonstrate how this measure
emerges both in the noninteracting and interacting evolution of observables. In particular, we find an
unambiguous relationship between our measure and the variance of single-particle observables in the
noninteracting limit. A nonvanishing interaction leads to a hierarchy of interaction-induced interference
processes, such that even the expectation value of single-particle observables is influenced by the degree of
indistinguishability.
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Interference between indistinguishable particles is
common to all many-particle quantum systems. Since
the observation of the interference of two photons on a
beam splitter by Hong, Ou, and Mandel (HOM) [1], the
highly nontrivial character [2–7] of many-particle interfer-
ence has been demonstrated in extensive studies of
photons transmitted through multimode beam splitter
arrangements [8–21]. While these studies are restricted
to noninteracting particles, it is clear that interference also
occurs in the presence of interactions. This was shown for
HOM-type interference [22–26], in the dynamics of a
bosonic Josephson junction [27,28], or in quantum walks
[29–33]. However, these results are limited to two particles
or two external modes, and a systematic understanding of
the interplay between interactions and many-particle inter-
ference in the time evolution of general many-particle
systems is still lacking. This fundamental question is,
however, key to a variety of complex quantum phenomena,
such as dynamical equilibration after a quench [34–36],
correlation formation [37,38], or transport in interacting
many-body systems [39,40]. Furthermore, certification of
the bosonic and fermionic, as well as the (in)distinguish-
able character of particles [12,14,41–44], could also be
achieved by identifying the corresponding interference
fingerprints in the (interacting) dynamics.
Hence, it is the purpose of this work to systematically

explore the impact of particles’ indistinguishability on the
time evolution of interacting many-body systems. We
consider bosons that occupy a discrete set of coupled
modes and whose mutual (in)distinguishability is con-
trolled by an additional internal degree of freedom. First,
we define a measure of the degree of indistinguishability
(DOI) of many-body configurations, which is adapted to
the study of interacting systems evolving continuously in

time from an arbitrary initial Fock state. This is in contrast
to other DOI measures introduced in noninteracting pho-
tonic scattering setups [42,45–48]. We show that our
measure has an intuitive interpretation in terms of two-
particle interference. In the noninteracting case, it correlates
directly with the variance of experimentally accessible
single-particle observables (1POs), as demonstrated in
Fig. 1. Remarkably, in the presence of interactions, the
DOI is also imprinted on the bare expectation values
of 1POs.
Let us consider a general many-particle system with a

discrete set of mutually coupled external modes l ∈
f1; 2;…; Lg (e.g., photonic input and output modes
coupled via a beam splitter array, or tunnel-coupled sites
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FIG. 1. Density histogram of the normalized time-averaged
variance F [Eq. (4)] of the on-site atomic density (at an arbitrary
site) versus the DOI measure I [Eq. (1)] of the initial Fock state in
a noninteracting Bose-Hubbard system. We consider a total of
3 × 105 initial states sampled uniformly over the available Hilbert
space of a system with L ¼ 12 sites and N ¼ 24 bosons of S ¼ 2
(black), 3 (red), and 4 (blue) distinct species. Projections of the
histogram along the axes are shown independently for each S.
Thick solid lines indicate our bound (5) on the F -I correlation.
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in an optical lattice), and with a discrete set of internal
states, or “species,” σ ∈ fσ1; σ2;…; σSg (e.g., photon
polarization or hyperfine states of atoms). For a many-
body Fock state jΨi ¼⊗l;σ jNl;σi, with Nl;σ bosons of
species σ in mode l, we propose the following quantitative
measure of the DOI:

I ≔
P

σ

P
m≠n Nm;σNn;σP
m≠nNmNn

: ð1Þ

Here, Nl ≔
P

σNl;σ denotes the total number of particles in
mode l, such that I ∈ ½0; 1�. This measure takes the value 1
only when all particles are indistinguishable (i.e., only one
species is present). When each particle is of a different
species (maximally distinguishable), then, consistently,
I ¼ 0. However, this minimum value is also reached when
all particles of a given species occupy the same mode.
According to our measure, the DOI does not solely depend
on the repartition of particles among species, but also on
how the species are distributed over the external modes
[49]. This interplay between external and internal degrees
of freedom, although discussed for the indistinguishability
of two photons [50,51], has not been clearly resolved in
previously introduced DOI measures [42,45–48].
In the following, we demonstrate how this measure

emerges in the dynamics of interacting and noninteracting
systems. In order to assess the consequences of
(in)distinguishability in the evolution, we require both
the Hamiltonian and the measured observables to be
species-blind: they neither resolve, nor modify, the internal
degree of freedom σ of the particles [52]. In particular, the
number of bosons per species is conserved.
We first consider the noninteracting case, where the

Hamiltonian takes the general form of a species-blind 1PO,
H0 ¼

P
i;j;σJija

†
i;σaj;σ , and the time-evolution of the

bosonic operators is given by the matrix elements clmðtÞ
of the single-particle unitary evolution operator:
al;σðtÞ ¼

P
mclmðtÞam;σ . Under these conditions, many-

particle interference is known to manifest itself only on the
level of two-particle or higher-order observables [53].
Indeed, the expectation value of a general species-
blind two-particle observable (2PO), O2 ¼

P
i;j;k;l;σ;ρ

Oijkla
†
i;σa

†
j;ρak;σal;ρ, in a Fock state jΨi reads

hO2ðtÞiΨ ¼
X

i;j;k;l

Oijkl

�X

m;n

Cmn
ijklðtÞNmðNn − δmnÞ

þ
X

m≠n;σ
Cmn
jiklðtÞNm;σNn;σ

�

: ð2Þ

The above expression can be interpreted as a sum over two-
particle paths consisting of forward time evolution from the
initial state, application of the observable and backward
time evolution back to the same state [52]. The first line of
Eq. (2) collects contributions of “ladder” paths, where the
two particles initially in modes m and n return to their

respective starting positions. These are associated with an
amplitude Cmn

ijklðtÞ ≔ c�imðtÞc�jnðtÞckmðtÞclnðtÞ and a multi-
plicity NmNn. They are common to all many-body
configurations with the same initial total density
distribution. Hence, they bear no information on the
(in)distinguishability of the bosons. The second line in
Eq. (2) represents additional “crossed” paths, where two
particles of the same species σ, initially in modes m and n,
are swapped, arriving in modes n andm, respectively. Such
processes have species- (i.e., σ-) dependent multiplicities
Nm;σNn;σ , and therefore, they bear information on the
(in)distinguishability of the initially prepared many-particle
configuration. Figure 2(a) illustrates these ladder and
crossed two-body processes for an observable that is local
in the mode index.
The multiplicities of the crossed and ladder paths appear

respectively in the numerator and denominator of our
DOI measure [Eq. (1)], which therefore weighs the relative
importance of the two types of processes in the expectation
value of any 2PO [Eq. (2)]. We find that our measure
manifests itself most directly when the 2PO under
consideration is the square of a species-blind 1PO,
O1 ¼

P
i;j;σOija

†
i;σaj;σ, as this ensures that the factors

Nm;σNn;σ appear dressed by real and positive coefficients
in Eq. (2). In particular, we consider the variance ΔO1ðtÞ ¼
hO2

1ðtÞiΨ − hO1ðtÞi2Ψ of on-site density operators N l,

ΔN lðtÞ ¼
X

m≠n;σ
Cmn
llllðtÞNm;σðNn;σ þ 1Þ; ð3Þ

with amplitudes Cmn
llllðtÞ ¼ jclmðtÞclnðtÞj2. By averaging

over time and subtracting the σ-independent contribution
in Eq. (3), the normalized time-averaged variance of the
1PO in the Fock state jΨi reads

F ≔
ΔN lðtÞ − Δ0

Δ1 − Δ0

¼
P

σ

P
m≠n C

mn
llllðtÞNm;σNn;σ

P
m≠n C

mn
llllðtÞNmNn

; ð4Þ
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FIG. 2. Two-particle paths of indistinguishable bosons: ladder
(solid lines) and crossed (dashed lines). (a) Noninteracting:
Processes ðm; nÞ⇄ðlÞ associated with the amplitude Cmn

llllðtÞ in
Eq. (3) contribute to the variance ΔN lðtÞ of the total density
operator N l of the lth mode. (b) Interacting: Processes with
amplitude Dmn

ll ðtÞ in Eq. (7) (which accounts for the interaction
on all modes s, at times t0 ≤ t, before one of the particles visits
mode l) contribute to the expectation value hN lðt; UÞi.
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where the overbar denotes time average, and Δ0;1 corre-
spond to ΔN lðtÞ in a state with the same total density
distribution as jΨi but with I ¼ 0 (Δ0) or I ¼ 1 (Δ1) (i.e.,
in a fully distinguishable configuration, or in the state
involving only one species, respectively [54]). A compari-
son of Eqs. (1) and (4) shows that, for a narrow distribution
of the Cmn

llllðtÞ over m ≠ n, the measurement of F directly
gives access to the DOI. Specifically, we find that [52]

jF − I j≲WC

μC
minðI ; 1 − IÞ; ð5Þ

where WC and μC are, respectively, the standard deviation
and the mean of the Cmn

llllðtÞ for all pairs m ≠ n.
It is instructive to study the behavior of our DOI measure

in the special case of a two-mode system, such as a
multicomponent, species-blind, noninteracting Bose-
Hubbard Hamiltonian (BHH) [52] with L ¼ 2 sites. In
any two-mode system, only one coefficient, C12

llllðtÞ, con-
tributes to F , which therefore reproduces exactly the
DOI measure I . For two bosonic species σ ∈ f↑;↓g,
and fixed total particle number N, the configuration
space of the system is determined by three parameters:
the mode population imbalance, M ¼ N1 − N2, and
the species imbalances per site, δ1 ¼ N1;↑ − N1;↓ and
δ2 ¼ N2;↑ − N2;↓. The DOI measure then reads

I ¼ 1

2
þ 2δ1δ2
N2 −M2

: ð6Þ

ForM ¼ 0, the space of nonequivalent Fock configurations
is spanned by δ1 ∈ ½0; N=2� and jδ2j ≤ δ1, and it is charted
in Fig. 3 for N ¼ 8. According to Eq. (6), having all
particles of the same species [δ1 ¼ δ2 ¼ N=2] corresponds
to I ¼ 1, whereas complete spatial separation of the two
species [δ1 ¼ −δ2 ¼ N=2� implies I ¼ 0. As shown in the
top inset of Fig. 3, these two initial states seed, respectively,
maximum and minimum values of the density fluctuation
ΔN 1ðtÞ, as a direct consequence of the presence or absence
of the two-particle crossed terms in Eq. (2) and Fig. 2(a).
Furthermore, all states with δ2 ¼ 0—although having
different species imbalance δ1 þ δ2—have the same
I ¼ 1=2 and yield the same fluctuation of 1POs over time
if the bosons do not interact. Conversely, states with equal
species imbalances can exhibit different DOI values and
hence dissimilar fluctuations.
Let us proceed to larger numbers of modes and species.

We numerically demonstrate a remarkable F -I correlation
in a species-blind BHH with L ¼ 12 sites and a total of
N ¼ 24 noninteracting bosons, as shown in Fig. 1. We
sample uniformly 105 initial states out of the total available
Fock space for each of the cases of S ¼ 2, 3, and 4 distinct
species. For each state, F is calculated using Eq. (4) and
plotted versus the DOI value I , together with the bound
provided by Eq. (5). We observe that the F -I correlation
becomes even more pronounced for larger L and/or N [55].
These results demonstrate that our DOI measure is at the

core of the time evolution of 2POs in noninteracting
systems [see Eq. (2)], and furthermore, that it can be
characterized from the variance of 1POs such as the on-site
density of cold bosons in optical lattices.
We now expand our analysis to the interacting case,

where, remarkably, the DOI is revealed already in the
expectation value of 1POs. To see this, we complement the
Hamiltonian by a species-blind, two-body interaction term
V ¼ P

i;j;k;l;σ;ρVijkla
†
i;σa

†
j;ρak;σal;ρ. For simplicity, we

elaborate on the case of contact “on-mode” interactions,
Vijkl ¼ ðU=2Þδijδjkδkl; our subsequent results, however,
are valid for the most general V [52]. In contrast to the
noninteracting scenario, al;σðtÞ is now nonlinear in the
initial creation and annihilation operators. Hence, in the
Heisenberg picture, any 1PO develops, over time, a
hierarchy of contributions in the form of two- and
many-particle observables whose importance is weighted
by the interaction strength. A perturbative treatment shows
O1ðt; UÞ ¼ O1ðt; 0Þ þ ðUtÞPðtÞ þO½ðUtÞ2� [52]. Here,
O1ðt; 0Þ is a 1PO corresponding to the noninteracting
evolution, with an expectation value independent of the
particles’ (in)distinguishability. In contrast, PðtÞ is a 2PO
with time-dependent matrix elements, and its expectation
value reads

hPðtÞiΨ ¼ 2ℑ
X

i;j

Oij

�X

m;n

Dmn
ij ðtÞNmðNn − δmnÞ

þ
X

m≠n;σ
Dnm

ij ðtÞNm;σNn;σ

�

; ð7Þ

where Dmn
ij ðtÞ is the amplitude of the ladder and crossed

two-particle paths arising due to the interaction [52]. These
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FIG. 3. Density plot of the DOI for a two-species (blue/red)
double well in the δ1-δ2 plane for M ¼ 0 [see Eq. (6)], including
all nine nonequivalent configurations for N ¼ 8. Top and bottom
insets show ΔN 1ðtÞ for four initial Fock configurations [I ¼ 1
(blue, totally indistinguishable), 0.5 (yellow, black dashed), and 0
(green, maximally distinguishable)] for the noninteracting and
interacting (U=J ¼ 0.3) cases, respectively.
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are illustrated in Fig. 2(b) for the one-mode density N l
as 1PO.
By analogy with the result for 2POs in the noninteracting

case [compare the structure of (7) to that of (2)], the DOI
measure I can be identified in the expectation value of
1POs in the interacting case, dressed by the amplitudes
Dmn

ij ðtÞ. Interactions therefore imprint the DOI on the bare
expectation value of 1POs. This is demonstrated in Fig. 4,
where we show the expectation value hN 1ðt; UÞi for the
two-species two-site BHH [27,28,56–63] subject to a tilt
(to ensure a nonvanishing Ut correction [64]). Within a
regime of small Ut, which depends on the system under
consideration, the evolution of the on-site density is well
described by Eq. (7). In particular, the initial slopes of the
curves in Figs. 4(a2) and (b2) are uniquely determined by
I . For larger interaction strengths and/or times, higher-
order terms contribute to the expectation value of the
observable, which additionally probe three-particle and
higher processes [causing, e.g., states with the same
I ¼ 0.5 to exhibit independent trajectories—see panels
(a2) and (b2) of Fig. 4]. Nonetheless, the correlation
between hN 1ðt; UÞi and I persists beyond first order
perturbation. This suggests that our measure of the DOI
based on two-particle paths remains meaningful even in the
presence of higher-order processes.
Indeed, also the long-time signals ΔN 1ðt; U ≠ 0Þ,

although more involved than in the noninteracting case
due to the appearance of extra frequencies (compare the top
and bottom insets of Fig. 3), indicate that the time-averaged
density fluctuation still correlates with the DOI of the initial
state. This is demonstrated in Fig. 5, where we show
ΔN 1ðt; UÞ as a function of U [52]. For states with a
homogeneous initial distribution of particles (first row of
Fig. 5), one observes a striking correlation between
ΔN 1ðt; UÞ and I over the entire range of interaction
strengths (also for L > 3—not shown in the figure). For

states with a strongly imbalanced initial distribution of
particles (second row of Fig. 5), this correlation also holds
for weak interactions, but is lost for larger values of U.
Closer inspection of the system’s spectral structure shows
that, in the regime of strong interactions, the dynamics are
dominated by Fock states with the same interaction energy
as the initial state, which, in the imbalanced case, include
states with dissimilar density distributions [e.g., f7; 1g and
f1; 7g in the double well]. The interaction-mediated higher-
order processes connecting these states then contribute
predominantly to ΔN 1ðt; UÞ, breaking the correlation to
the DOI measure I . A detailed characterization of this
effect will be the subject of future work.
We conclude by generalizing our DOI measure

to superpositions of Fock states jΨi ¼ P
jcjjψ ji,

where each term has the same total density distribution
but a different number of particles per species. The
expectation value of a species-blind observable in such a
state is additive, since by definition, the observable
cannot change the number of particles per species. Thus,
we can additively generalize our DOI measure as
IΨ ¼ P

jjcjj2Iψ j
. For the exemplary Hong-Ou-Mandel

state jΨi ¼ ð ffiffiffi
α

p
a†1;↑a

†
2;↑ þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
a†1;↑a

†
2;↓Þjvaci, our mea-

sure I coincides with Mandel’s indistinguishability param-
eter α [67]. Using the additivity property of I , the effects of
indistinguishability in various generalizations of the Hong-
Ou-Mandel setup (e.g., nonmonotonicity in four-photon
interference [2,3]) are embedded in a more general
framework.
We have introduced a measure of the degree of indis-

tinguishability (DOI) of a many-particle quantum state,
which is derived from the structure of two-particle tran-
sition amplitudes, and could be accessed in experiments by
monitoring the fluctuations of one-particle observables.
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Our measure incorporates the significance of internal as
well as of external degrees of freedom for the DOI and for
the associated many-particle interferences, and it notably
exploits the information encoded in the continuous dynami-
cal many-particle evolution—inaccessible in many-particle
scattering scenarios. Our analysis also shows that inter-
action-induced interference reveals the DOI already in the
expectation value of single-particle observables, and that
the DOI remains a meaningful concept in the presence of
interactions. The characteristic dynamical features
observed here must have a structural counterpart in the
underlying energy spectra and many-particle eigenstates,
which deserve further investigation. We emphasize that our
formalism and conclusions apply to general many-particle
scenarios beyond the Bose-Hubbard model chosen to
illustrate our results numerically.
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