
 

Giant Catalytic Effect of Altruists in Schelling’s Segregation Model

Pablo Jensen,1,2,* Thomas Matreux,1,2,3 Jordan Cambe,1,2 Hernan Larralde,4 and Eric Bertin5
1Institut Rhônalpin des Systemes Complexes, IXXI, Lyon F-69342, France
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We study the effect of introducing altruistic agents in a Schelling-like model of residential segregation.
We find that even an infinitesimal proportion of altruists has dramatic catalytic effects on the collective
utility of the system. Altruists provide pathways that move the system away from the suboptimal
equilibrium it would reach if the system included only egoist agents, allowing it to reach the optimal steady
state.
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Simple social models may be useful to improve our
intuitive, often implicit, conceptualizations of social proc-
esses [1–4]. For example, the segregation model proposed
by Schelling [5] helps understanding that the collective
state reached by agents may well be different from what
each of them seeks individually. Specifically, Schelling’s
model shows that even when all agents share a preference
for a mixed city, the macroscopic stationary state may be
segregated [6]. In this Letter, we show that introducing a
vanishingly small concentration of altruist agents gives rise
to a strongly nonlinear response.
Our model combines two important themes for many

disciplines, including physics and economics: The large
effects of small perturbations and the influence of altruistic
behavior on coordination problems. On the first point,
microscopic causes leading to macroscopic effects are well
known in physics. Chaos theory has shown that some
dynamical systems are prone to an exponential increase of
small perturbations [7], a topic of recurring interest in other
fields, such as modeling of ecological competition [8] or
pattern formation [9]. More related to our work, there are
several examples of large effects arising from small
changes in population composition. It has been shown
that a small variation in the proportion of uninformed
individuals may lead to strong changes in the way collec-
tive consensus is achieved by groups manipulated by an
opinionated minority [10]. In the minority game [11],
introducing a small proportion of fixed agents—i.e., agents
that always choose the same option—induces a global
change in the population behavior, leading to an increase of
the overall gain [12,13]. In the voter model, a finite density
of voters that never change opinion can prevent consensus
to be reached [14].
On the second point, altruism is a major topic in

evolutionary biology and economics [15–17]. Many

models have shown that pair interactions between selfish
players lead to stationary states of low utility. They have
introduced various types of altruistic behavior to investigate
how it may lead to a better equilibrium: altruistic punish-
ment [15,16], inequity aversion [18], fraternal attitudes
[19], agent mobility [20], etc. Here, we use a simple
definition of altruism (see below) and concentrate on the
proportion of altruists needed to reach the social optimum.
We show that, unexpectedly, an infinitesimal proportion of
altruists can coordinate a large number of egoists and allow
the whole system to reach the social optimum.
Description of the model.—Our model represents the

movement of a population of agents in a “city,” which is
divided into Q ≫ 1 nonoverlapping blocks, also called
neighborhoods. Each block is divided into H sites and has
the capacity to accommodate H agents (one per site).
Initially, a number of agents N ¼ QHρ0 are distributed
randomly over the blocks, leading to an average block
density ρ0 (ρ0 ¼ 0.4 throughout the Letter). All agents
share the same utility function uðρÞ that depends on the
agents density ρ in the neighborhood where they are
located. We choose a triangular utility (see Fig. 1): agents
experience zero utility if they are alone (ρ ¼ 0) or in full
blocks (ρ ¼ 1), and maximum utility u ¼ 1 in half-filled
blocks (ρ ¼ 0.5). The collective utility U is defined as the
sum of all agents’ utilities, U ¼ H

PQ
q¼1 ρquðρqÞ and the

average utility ũ per agent is ũ ¼ U=N.
Building upon our past work on Schelling’s segregation

model [6], we now mix two types of agents: “egoists,” who
act to improve their own, individual, utility, and a fraction p
of “altruists,” who act to improve the collective utility.
Thus, egoists have as objective function the variation of
their individual utility Δu, while altruists consider the
variation of the overall utility ΔU. The dynamics is the
following: at each time step, an agent and a free site in
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another block are selected at random. The agent accepts to
move to this new site only if its objective function strictly
increases (note that the moving agent is taken into account
to compute the density of the new block). Otherwise, it
stays in its present block. Then, another agent and another
empty site are chosen at random, and the same process is
repeated until a stationary state is reached, i.e., until there
are no possible moves for any agent.
Limiting cases: pure egoist or altruist populations.—In

Ref. [6], we have computed analytically the stationary
states of a homogeneous population of egoist or altruist
agents. Altruists always reach the optimal state, given by
half filled (or empty) blocks and an average pure altruist
utility ũA ≃ 1. In contrast, a pure egoist population collec-
tively maximizes not U but an effective free energy that
we have called the link L. The link is given by the sum
over all blocks q of a potential lq: L ¼ P

qlq, where

lq ¼
PNq

nq¼0 uðnq=HÞ, with Nq ¼ Hρq is the total number

of agents in block q. In the large H limit,

lðρqÞ ≈H
Z

ρq

0

uðρÞdρ: ð1Þ

The link may be interpreted as the cumulative of the
individual marginal utilities gained by agents, as they
progressively enter the blocks from a reservoir of zero
utility. Its key property is that, for any move, ΔL ¼ Δu.
Since egoists move only when their individual Δu is
positive, the stationary state is given by maximizing L
over all possible densities fρqg of the blocks, from which
no further Δu > 0 can be found. Analytical calculations [6]
show that this stationary state corresponds to crowded
neighborhoods, far above the state of maximum average
utility given by ρq ¼ 1=2. For the case studied in this Letter,

the stationary density is given by ρE ¼ 1=
ffiffiffi
2

p
, leading to a

pure egoist utility ũE ¼ 2ð1 − ρEÞ ≃ 0.586 ≪ 1. Numerical
simulations have confirmed these results, though the
existence of many metastable states around ρE ≃ 0.7 leads
to fluctuations in the simulated final densities.

Mixing populations: qualitative picture.—We now inves-
tigate how adding a fraction of altruists drives the system
away from the frustrated pure egoist case to the optimal
configuration observed in the pure altruist case. We find
that, instead of a linear response, the system reaches the
optimal state even at very low altruist concentrations
[p < 0.01 in Fig. 2(a)]. To help in understanding the origin
of this strongly nonlinear effect, the different panels of
Fig. 3 illustrate the evolution of a small system (H ¼ 225,
Q ¼ 36 and p ¼ 0.04). Initially, altruists (yellow) and
egoists (red) are distributed randomly in the blocks (a),
which all have a density ρ ≃ ρ0 ¼ 0.4. Then, blocks with
the lowest densities are depleted by both altruists and
egoists that prefer districts with higher densities. At some
point, when the block density increases, the behaviors of
the two kinds of agents diverge. Altruists “sacrifice”
themselves and leave these high density blocks, moving
to blocks with lower densities, as this increases the utility of
their many (former) neighbors, leading to an increase in
global utility. On the other hand, egoists would lose
individual utility by doing so, and therefore remain in
these high density blocks which continue to feed on the

FIG. 1. Agent utility function: uðρÞ ¼ 2ρ for ρ ≤ 0.5 and
uðρÞ ¼ 2ð1 − ρÞ for ρ > 0.5.

FIG. 2. Evolution of the average utility as a function of (a) the
altruists’ fraction p (note the log scale on the x axis) and (b) the
rescaled fraction p� ¼ 2pQρ0. We take H ¼ 200 and vary Q as
shown. The fluctuations for low p� values (before the transition)
arise from metastable states in the pure egoist regime.

PHYSICAL REVIEW LETTERS 120, 208301 (2018)

208301-2



remaining neighborhoods with ρ < 1=2. After a few
iterations [Figs. 3(b) and 3(c)], selfish agents have gathered
into “segregated” neighborhoods. This is the classical
segregation observed in the pure egoist case [6], arising
from the well-studied amplification of density fluctuations.
Note that all altruists have left the egoist blocks and gather
into few blocks with lower densities [Fig. 3(c)] and then
into a single neighborhood, whose density increases until
it becomes attractive for egoist agents who “invade” it
[Figs. 3(d) and 3(e)], while altruists leave it for other lower
density blocks [Fig. 3(e)]. The density of some of these new
blocks then increases, allowing for successive egoist
invasions [Figs. 3(f) and 3(g)]. These migrations of egoist
agents reduce the density of the overcrowded egoist blocks,
increasing the overall utility. Eventually, the system reaches
a stationary state in which no agent can move to increase its
objective function [Fig. 3(h)].
Quantitative description.—We now give a quantitative

explanation of the decrease of egoist block densities and
show that an altruist concentration p ≃ 1=Q is sufficient to
drive the system towards the optimal state, ũ ¼ 1. To
understand altruists’ dynamics, it is useful to replace their
dynamics by an equivalent egoist dynamics with a utility
ualtrðρÞ that differs from the original utility uðρÞ. An exact
mapping can be done in the following way. As mentioned
above, each altruist agent tries to maximize the global
utility U ¼ H

PQ
q¼1 ρquðρqÞ. In contrast, an egoist agent

acts to maximize the link function L ¼ P
qlðρqÞ, with

lðρqÞ given in Eq. (1). As a result, an altruist agent exactly
behaves as an equivalent egoist agent with a utility function
ualtrðρÞ satisfying the relation

ρuðρÞ ¼
Z

ρ

0

ualtrðρ0Þdρ0 ð2Þ

since the resulting function to be maximized is the same.
Differentiating this last equation, one finds

ualtrðρÞ ¼
∂ðρuðρÞÞ

∂ρ ¼
�
4ρ; for ρ ≤ 1

2

2ð1 − 2ρÞ; for ρ > 1
2
:

ð3Þ

This effective utility function for altruists is plotted on
Fig. 4. Note that this effective utility is not the one used to
compute average or global utilities, it only helps under-
standing altruists’ moves, since an altruist moves to a new
block only if ualtrðρÞ increases. Figure 4 shows that altruists
have a clear preference for blocks with densities just below
1=2. The large discontinuity at ρ ¼ 1=2 arises because at
this density the original utility function uðρÞ changes slope
and starts to decrease. Then, an altruist moving from a
block with ρ < 1=2 to a slightly more populated one with
ρ > 1=2 induces a large decrease of total utility, since all its
former neighbors loose utility (as the density of the initial

(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 10

(e) t = 12 (f) t = 35

(g) t = 36 (h) t = 240

(i) Density profile

FIG. 3. Evolution of the city for p ¼ 0.03, Q ¼ 36, and
H ¼ 225. Panels (a)–(h) show the occupation of the different
neighborhoods at different times. Egoists are represented in red,
altruists in yellow, empty sites in black. (a) Initial, (b) first steps,
(c) usual segregation. (d),(e): First invasion and altruist escape
from the block surrounded in blue. (f),(g): Final invasion of the
block surrounded in blue. (h) Stationary state. In panel (i), each
continuous line represents the evolution of the density of a single
neighborhood. Vertical dashed lines show the times correspond-
ing to panels (a)–(h).
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block decreases) and so do its new neighbors, as the density
of their block increases.
Figure 2(b) suggests that the transition towards the

optimal state is continuous and takes place at an altruist
concentration p ≃ 1=Q for all values of Q. This Q
dependence is important, since in the thermodynamic limit
(Q → ∞), the transition would take place at p → 0. We
now derive this result in a simple way by computing
analytically the evolution of the average utility as a function
of the altruist concentration p. Let’s start with very low
altruist concentrations and assume that the initial dynamics
is dominated by egoists, which form the usual Schelling’s
overcrowded blocks, as observed above [Fig. 3(c)] and in
previous work [6]. Therefore, we take as starting point a
city composed of nE egoist blocks with uniform density
ρe ¼ ρE > 1=2, such that ρE ¼ ð1 − pÞQρ0=nE. Taking a
uniform ρe value is justified because any density fluc-
tuation for ρe > 1=2 is rapidly wiped out by the dynamics,
as shown by the unique density of egoist blocks in Fig. 3(i).
Altruists can be initially somewhat scattered over the
remaining blocks but, as their effective utility clearly shows
(Fig. 4), they rapidly aggregate into a single block, leading
to an altruist density ρa ¼ pQρ0 provided ρa < 1=2, or
equivalently

p < phigh ≡ 1

2ρ0Q
: ð4Þ

The driving force for the transition is the relative values of
agents’ utilities in egoist and altruist blocks, respectively,
ue ¼ uE ¼ 2 − 2ρE and ua ¼ 2ρa since ρa < 1=2 and
ρE > 1=2. For very low p values, ρa is small, leading to
ue > ua and the system remains in the usual frustrated
Schelling egoist state ũðpÞ ≃ ũE which is essentially
constant. When p reaches a value plow such that
uðρa þ 1=HÞ > uðρEÞ, a first egoist can improve its utility
by moving into the altruist block, whose density becomes
ρa þ 1=H [Figs. 3(d)–(f)]. This gives

plow ≡ 1 − ρE − 1=H
ρ0Q

: ð5Þ

The density of the invaded block rapidly increases
[Fig. 3(e)] and eventually reaches 1=2. At this point, the
altruists’ effective utility becomes negative, pushing them
to leave for other lower density blocks [Fig. 3(f)]. As
previously, altruists gather in another single block of
identical density ρa ¼ pQρ0. The invasion has led to a
slight decrease of the density of egoist blocks to ρe < ρE,
and therefore to a slight increase of egoists’ utility,
ue ¼ uðρeÞ > uðρEÞ. Successive invasions of the block
partially filled by altruists are possible until ρe decreases
down to the value ρ�e such that uðρ�eÞ ¼ uðρa þ 1=HÞ. This
leads to ρ�e ¼ 1 − pQρ0 − 1=H (ρ�e > 1=2 as long as
p < phigh). The equality of utilities implies ũðpÞ ¼
uðρaÞ ¼ 2pQρ0 þ 2=H. When p ¼ phigh, the final (lowest)
egoist density reaches the optimal value ρ�e ¼ 1=2 and
no further improvement in average utility is possible:
ũðpÞ ¼ 1 (to simplify the discussion, we ignore here
corrections of order 1=H that depend on the parity of H).
This description remains valid for larger altruist concentra-
tions, the only difference being that, at the end, the additional
altruists form stable blocks with densities ρa ¼ 1=2.
In summary, the evolution of the average utility ũ

follows:

ũðpÞ ¼ 2 − 2ρE for p ≤ plow

ũðpÞ ¼ 2pQρ0 þ 2=H for plow ≤ p ≤ phigh

ũðpÞ ¼ 1 for p ≥ phigh:

ð6Þ

Our analysis predicts that plotting ũ as a function of the
rescaled altruist proportion p� ¼ p=phigh ¼ 2pQρ0 should
lead to a universal transition starting at p� ¼ 2 − 2ρE ≃
0.586 and ending at p� ¼ 1. Simulations perfectly confirm
our calculations [Fig. 2(b)].
Discussion.—Our model illustrates the complexity of the

dynamics produced by two types of agents, even when they
follow simple rules. Introducing altruists into a population
dominated by egoists increases the average utility much
more rapidly than expected from a linear projection. The
interplay between the different behaviors leads to complex
“catalytic” phenomena. By catalytic, we mean that altruists
are not “consumed” once they coordinate egoists, and can
continue to help egoists finding the optimal configuration
indefinitely. The global utility increase per altruist at small
p can be computed easily: δUaltr≡½UðpÞ−Uðp¼0Þ�=
NA≃ð1−0.56Þρ0QH=ðpρ0QHÞ¼0.44=p. When p¼ 1=Q,
δUaltr ≃ 0.44Q. Each altruist induces a utility change
proportional to the system size, which becomes infinite
for infinite systems. The fact that such large effects arise
from endogenous dynamics is a key point suggested by
recent models of social systems [2,10,13,14]. Indeed, most
economic models focus on equilibrium and explain crisis
by exogenous factors. In contrast, physics models can
interpret large opinion swings in a population as a

FIG. 4. Effective utility function of altruistic agents.
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branching process that generates avalanches or abrupt opti-
mal strategy switches as intrinsic first order transitions [2].
Interestingly, while the stationary state of a system

composed of a single type of agents (either egoists or
altruists) can be mapped to an equilibrium state, this is no
longer the case when including two types of agents, except
if some restrictive conditions are met [6]. In a thermody-
namic analogy, the utility function can be mapped (in the
zero temperature limit considered here) to a chemical
potential, as shown in Ref. [21], when a single type of
agents is present. If a system with both egoist and altruist
agents could be mapped to an equilibrium system, chemical
potentials could be defined as μeðρa; ρeÞ ¼ uðρa þ ρeÞ and
μaðρa; ρeÞ ¼ ualtrðρa þ ρeÞ. As chemical potentials derive
from a free energy, their cross derivatives would be equal,
∂μe=∂ρa ¼ ∂μa=∂ρe, leading to u0ðρÞ ¼ u0altrðρÞ. This
equality is not satisfied as seen from Figs. 1 and 4, showing
that the system reaches a nonequilibrium steady state.
We are well aware that simple models do not allow us to

draw any rigorous conclusion about what is going on in the
real world [4,22,23]. While Schelling’s segregation model
neatly shows that one cannot logically deduce individual
racism from global segregation, it may well be that for
some towns racism is one cause of segregation, for some
others not; at any rate the reasons behind urban segregation
are far more complex than those that any simple model can
come up with. Simple models can be helpful to analyze
some interesting phenomena, the origins of which may be
obscured in more complicated realistic settings. Ours may
help thinking about the effectiveness of coordination by an
infinitesimal proportion of altruist agents, but it cannot be
directly applied to real systems. Real agents do not behave
like these virtual robots: they are able to put their actions
into context, to anticipate the behavior of the others, and,
moreover, they disagree about what is the social “opti-
mum” [4,24].
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