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The intrinsic longitudinal and transverse dispersivity of bidisperse random packings of spheres with
size ratio 5∶1 was determined by pulsed field gradient nuclear magnetic resonance, in the dilute regime
where small spheres occupy between 0% and 5% of the packings’ volume. Small spheres plugging pores
systematically raise the mechanical transverse and longitudinal dispersivity above that of reference
packings of monodisperse spheres. NMR-derived porosities, widths of velocity distributions, and
dispersivities reveal distinct states of structural disorder above and below a relative sphere concentration
n=N ¼ 1, where n and N are the number densities of small and large spheres.
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The random packing of monodisperse spheres (RPMS) is
commonly used to study tracer dispersion by constant Stokes
flowanddiffusion in disordered porousmedia. This process is
of profound importance in chemical separations, chromatog-
raphy, and reactors, and in the spread of contaminant plumes
in aquifers[1–4]. The conceptual simplicity of the RPMS
geometry and the ease with which a packing can be made in
the laboratory or prepared “in silico” enable robust compar-
isons across laboratories, and with theoretical predictions.
The dispersivity of a porous medium is defined as
l ¼ σ2=2hζi, where σ2 is the variance of an asymptotically
Gaussian tracer displacement distribution and hζi is themean
displacement. Longitudinal and transverse dispersivities lk
and l⊥ need to be considered separately, and both depend on
reduced velocity Pe ¼ v̄d=Dm, where v̄ is the mean flow
velocity, d is the sphere diameter, and Dm is the tracers’
diffusion coefficient. Saffman predicted [5,6] logarithmic
growth of lkðPeÞ in a random network of identical capillaries,
and his prediction maps onto pulsed field gradient nuclear
magnetic resonance (PFG-NMR) results in RPMS [7] if one
takes the capillaries to be about twice as long as they arewide.
By contrast, the experimental transverse dispersivity l⊥ðPeÞ
of a RPMS does not grow, it decreases monotonically with
Pe and can be described by a model incorporating three pore
scale mixing processes governed by diffusion and flow
around neighboring packed spheres [8]. The velocity depend-
ence of longitudinal and transverse dispersion is governed
by diffusion perpendicular to the local flow. It couples flow
zones to stagnation zones, which is important for longitudinal
dispersion, and it couples streamlines at the center of a pore,
which is important in transverse dispersion.
The RPMS with its known dispersion properties is a

decidedly homogeneous random porous medium. The
present work introduces short-range heterogeneity to the
RPMS by incrementally adding small monodisperse

spheres into the pore space. The resulting bidisperse
packings exhibit partially plugged pore spaces analogous
to those arising naturally in multiphase phase flows during
oil production, where capillary forces may trap water in the
formation, or analogous to pore spaces plugged by biofilms
or filtrates [9], or to fouled separation columns and reactors,
to name a few examples. Our homogeneous bidisperse
packings retain the RPMS’s fundamental conceptual sim-
plicity, enabling comparison with simulations and theory.
We show how findings for the bidisperse case connect with
those of the RPMS [7,8,10].
A RPMS is characterized experimentally by two param-

eters, the sphere diameter d and packing porosity ϵ, or
equivalently the sphere diameter and a reference length
λ ¼ 6rh, where rh is the volume-to-surface ratio Vp=Sp ¼
d=6 × ϵ=ð1 − ϵÞ of the pore space. In a bidisperse packing
two additional parameters must be set based on presumed
interest: (1) the ratio of sphere diameters dL=ds, where ds
and dL are the diameters of small and large spheres, and
(2) the relative number densities n andN for small and large
spheres, respectively. In order to use small spheres as
random obstructions in a macroscopically homogeneous
random matrix of large spheres, we choose dL=ds ¼ 5, a
ratio for which a small sphere fits tightly into the smallest
possible pore of the closest possible packing of large
spheres, the tetrahedal void space in a fcc unit cell. To
set n=N we take the number of pores, however defined, to
be approximately equal to N. Six packings were prepared
with ratios n=N ∈ f0; 1=3; 1; 3; 6; 9g to span compositions
from the dilute limit n=N < 1, where some pores are
plugged but many are not, up to a presumed “overfilled”
limit n=N ≫ 1. The experiments with n=N ¼ 0 serve as a
reference for the five bidisperse packings with n=N > 0,
and to verify that the current quantitative results are
consistent with prior work on RPMS.
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The porosity and dispersive properties of a RPMS, and by
extension those of a bidisperse packing, depend on how
the packing is made: experimental porosities range from
ϵ ≃ 0.45 of the random loose packing (RLP) down to
random close packed (RCP) porosities ϵRCP ≃ 0.364. The
lowest porosities are typically attained by tapping or
vibrating a random packing to compact it, until no further
compaction is observed [11,12]. The definition of random
close packing is heuristic—what density can you reach if
you tap the packing often enough—and related to the
theoretical maximally jammed packing (MJP) with minimal
porosity of ϵMJP ≈ 0.366 [13,14]. Our target arrangement of
particles was a maximally dense (MJP/RCP) macroscopi-
cally homogeneous random packing of large spheres, with
increasing numbers of small spheres sprinkled randomly into
interstitial sites. This required a packing process minimizing
surface shear flows, which are known to produce size
segregation in binary mixtures [15–17], and eliminating
the shaking or tapping steps otherwise used to prepare RCP
packings, which are known to cause size segregation in the
Brazil-nut problem [18–21]. Below, we describe a hands-off
packing procedure which met these requirements and
produced consistent and what experimentally appear to be
maximally dense random packings. We then present the
NMR-derived measurements of packing properties confirm-
ing the sought-after consistency of the packings, followed by
a discussion of dispersion results.
Our flow tube was made of borosilicate glass (Götek-

Labortechnik) and had an inner diameter of 16 mm. It was
closed at the bottom with a porous disk flow distributor,
backed by a piston with a grooved face and with a central
channel to feed in fluids. The unloaded and dry flow tube
was positioned vertically and hooked up to a flow loop
described in Ref. [10]. A small volume of water was injected
into the tube from below, until the surface of the porous flow
distributor was just covered by water. This ensured that the
distributor and the first few layers of spheres in the loaded
packing would be wetted before saturation.
Mixtures of particles were prepared for each n=N,

beginning with 26 g (18 ml) of large borosilicate spheres
(dL ¼ 196� 14 μm) weighed and poured into a trans-
parent plastic storage container. A batch of small borosili-
cate spheres (ds ¼ 41� 3 μm), weighed to produce the
desired ratio n=N to within 1%, were sprinkled on top
of the larger ones. The container was closed and shaken
vigorously to send the spheres flying about inside, for
gaslike mixing of small and large spheres. The prepared
mixture of particles n=N was poured into the prepared flow
tube through the double-funnel setup sketched in with
Fig. 1. The inner cone-shaped funnel was fashioned from
filter paper. It rested within the outer plastic funnel. The tip
of the inner funnel was cut off to make a small opening
through which particles dumped into the paper funnel
would drizzle downwards, like sand in an hour glass. After
falling for some 4 cm, the thin stream of falling particles hit

a deflector grid made from short pieces of fishing line
strung across the opening of the outer funnel, as shown in
Fig. 1. Deposition times were on the order of minutes. The
scattered stream deposited particles uniformly onto the
porous packing growing from below, evinced by the fact
that the packing surface rose and remained flat and
horizontal throughout, in contrast to the cone formation
and avalanches observed with sand piles in hour glasses.
The absence of avalanches eliminated collective flows
which might have otherwise led to size segregation. The
loaded flow tube was saturated with water from below at a
flow rate of 1 ml=h. Then the filled tube was closed up with
another flow distributor assembly on top, and a few liters of
water were circulated through it, at different rates, to check
for fluid leaks and to verify that the size of the packing did
not change with flow rate or time; it did not. The filled tube
was then placed inside the vertical access magnetic reso-
nance imaging (MRI) system manufactured by Aspect
Imaging. MRI showed no evidence of trapped bubbles.
Displacement encoding PFG-NMR measurements were

conducted on the central 2 cm of the packing (equidistant
from inlet and outlet), employing a variant [22] of standard
displacement encoding PFG-NMR sequences [23] in which
the protons of water are the tracers. Water was pumped
through the packing at constant volumetric flow rate _V with
a pair of piston pumps (ISCO) providing pulseless flow.
Pulsed field gradients were applied in parallel or
perpendicular to the mean flow direction to encode dis-
placements in the longitudinal and transverse directions,
respectively. The complex NMR signal is given by
Sðq; v̄;Δ; DmÞ ¼ heiqζjðv̄;Δ;DmÞi, where ζj is the displace-
ment of a proton spin j in the direction of the displacement
encoding pulsed field gradients. Δ is the evolution interval
separating encoding and decoding PFG pulses, q is the
amplitude of the displacement encoding wave vector set up
by the PFG pulses, and Dm is the molecular diffusion
coefficient of water. NMR signals were acquired for
different flow rates and different values of Δ and q. A

FIG. 1. Particle loading setup. The stream of falling particles is
scattered by the deflector grid to produce spatially uniform
deposition below.
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self-consistent cumulant analysis [22] of a set fSðqkÞg
yields the mean tracer displacement hζi, the corresponding
mean flow velocity v̄ ¼ hζi=Δ, and the variance σ2k of tracer
displacements along the direction of flow. The porosity is
equal to ϵ ¼ _V=Av̄, where A ¼ 2 cm2 is the cross section
of the flow tube. As in RPMS, the distribution of mean
flow velocities Pv in our bidisperse packings has finite
width β and variance β2 ¼ hðv − v̄Þ2=v̄2i, due to wall
effects [7]. As in RPMS, measured longitudinal dispersiv-
ities l0k ¼ σ2k=2hζi grow linearly with mean displacements

l0k ¼ lkðPeÞ þ hζiβ2=2. The intrinsic longitudinal disper-
sivity lkðPeÞ of the infinite bidisperse packing and the
variance β2 are determined from the slope and y intercept
of measured l0k, as shown in the inset of Fig. 2(b). Note

that absent wall effects these slopes and β would be zero,
but in the laboratory it is inevitably finite and can be on the
order a few percent. Separate measurements perpendicular
to the flow yield the variance σ2⊥ of transverse displace-
ments. The velocity-dependent transverse dispersivity is
l⊥ðPeÞ ¼ σ2⊥=2hζi, averaged over multiple evolution times
at the same fixed velocity. Of the four measured quantities,
porosity ϵ and variance β2 are velocity independent and
probe the consistency of the packing procedure from one
packing to the next. The other two quantities, lkðPeÞ and
l⊥ðPeÞ, quantify the intrinsic velocity-dependent dispersiv-
ities, the pore scale transport quantities amenable to
simulation in infinite packings implemented with periodic
boundary conditions, or to theory with models including
obstructions or distributed channel sizes.

Measured porosities of all packings are shown with open
circles in Fig. 2(a). They fall into a range from 0.34 to 0.37;
the loose packing labeled RLP (E2 of Ref. [10]) is shown
with a filled circle. In packings n=N ≤ 1, less than 1% of
the packing volume is occupied by small spheres. These
packings exhibit consistent and near equal porosities with a
mean value of ϵ̄ ¼ 0.3633ð11Þ ≈ ϵRCP. The error bars on
the order of 1% reflect scatter in the porosity measurement;
the common systematic accuracy set by the calibration
of the NMR equipment is on the order of 1% as well. The
approximate equality of porosities for n=N ≤ 1 confirms
that the filling procedure described above is consistent and
produces approximately RCP packings, close to maximally
jammed RPMS state with ϵMJP ¼ 0.366. The remaining
three packings n=N ≥ 3 exhibit decreasing porosities with
increasing n=N, down to ϵmin ¼ 0.34 for n=N ¼ 9, con-
sistent with small spheres filling vacant pores in the pore
space. Notably, however, the packing n=N ¼ 3 exhibits a
larger porosity than packings n=N ≤ 1. This incongruity—
a rise in porosity as the number of small spheres is
increased—can be understood once we consider the sum
of porosity and volume fraction ϕs occupied by small
spheres, plotted with open squares in Fig. 2(a). This sum,
and with it the volume fraction ϕL ¼ 1 − ðϵþ ϕsÞ occu-
pied by large spheres, is approximately constant for the
three packings n=N ≥ 3, with ϵþ ϕs ¼ 0.388ð5Þ. This
suggests that for n=N ≈ 1 all available pores in the RCP
are all filled and that additional small spheres must wedge
apart the arrangement of large spheres to occupy
ϕL ≈ 0.612ð5Þ. The “wedged open” pore space then
gradually fills up as more small spheres are added,
n=N → 9. In what follows we shall see that the other
measurements support the conjectured existence of two
distinct random structures, one a partially plugged RCP
packing of large spheres, and the other an arrangement of
large spheres wedged apart by the smaller ones.
The variance β2 of Pv shown in Fig. 2(b) is a measure of

macroscopic flow homogeneity in a packing. It is derived
from the slope of l0k vs hζi shown for three representative
packings and two velocities each in the inset of Fig. 2(b).
For n=N ∈ f0; 1=3; 1g the value of β2 is constant, which
means that there is no measurable shift of flux between the
wall zone and the bulk of the packing upon addition of
small spheres; the width of the distribution of normalized
velocities Pv is β ≈ 5%. This width triples to β ¼ 15%

for n=N ¼ 9, and the plot shows the variance β2 rising
approximately linearly with n=N. This is consistent with a
systematic redistribution of flux between the bulk and the
boundary zone near the tube wall for n=N ≥ 3.
With porosity ϵ and variance β2 indicating the existence

of two distinct types of disorder for n=N ≤ 1 and n=N ≥ 3,
we now consider the intrinsic dispersivities of our bidisperse
packings. Figure 3(a) shows lkðPeÞ=rL for all packings,
where rL is the radius of a large sphere. Figure 3(b) shows
the corresponding transverse dispersivities l⊥ðPeÞ=rL. The
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FIG. 2. All lines are a guide to the eye. (a) The porosity (o)
ϵ ¼ 0.363 of packings n=N ≤ 1 is consistent with RCP/MJP
packing ϵMJP ¼ 0.366. Small spheres wedge large spheres apart
above n=N ¼ 1, as discussed in text. (b) The variance β2 of the
distribution of normalized drift velocities [7] depends on the
concentration of small spheres for n=N ≥ 1, indicating shift of
flux between wall zone and bulk of the packing.
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solid lines in both represent the known velocity-dependent
dispersivities of RPMS—logarithmic growth for the lk,
and the decreasing l⊥ of Ref. [8]—now shifted vertically
by fitted offsets parametrizing added mechanical dispersion.
For the transverse case, we consider data for Pe≳ 60 only,
velocities where mechanical and diffusively coupled
mechanical dispersion dominate the transverse dispersion
process. This figure illustrates that, to leading order,
increasing amounts of small spheres add systematic
velocity-independent (mechanical) dispersivity to the known
longitudinal and transverse dispersivity of the RPMS, even
in the regime n=N ≤ 1 where neither porosity nor β2 show
variation with n=N.
Finally, Fig. 4 quantifies the systematic added longi-

tudinal and transverse dispersivity, i.e., the respective
differences between the fitted lines of Fig. 3 and the
reference curve n=N ¼ 0, with standard error bars.
Between n=N ¼ 0 and n=N ¼ 1 longitudinal dispersivity
rises by up to δlk ≈ 0.2rL, which represents a significant
increase on longitudinal dispersivities of monodisperse
packings, for the velocities Pe > 10 of Fig. 3. The trans-
verse dispersivity also rises, by δl⊥ ≈ 0.017rL for n=N ¼ 1.
This again is a significant rise, compared to the intrinsic
mechanical dispersivity of a RPMS, which is lm ≈ 0.06rL.
Surprisingly, tripling the concentration of small spheres
from n=N ¼ 1 to n=N ¼ 3 causes longitudinal and

transverse dispersivities to plateau or even decrease, to
within the uncertainty of the measurement. This means that
the added small spheres actually improve the macroscopic
homogeneity of the flow field in this concentration range, a
finding which might inform the design of robust packings for
filtration applications, though there is of course a difference
between obstructions added in the packing process and those
arising by filtration. Beyond n=N ¼ 3 dispersivities rise
again, albeit more slowly than before. Notably the disper-
sivities and their unexpected dependence on the density of
small spheres also point to two distinct dispersion regimes,
one for n=N ≤ 1 and another for n=N ≥ 3, separated by a
transition plateau. This distinct concentration dependence of
δlk and δl⊥ is consistent with the distinct random packing
arrangement conjectured in the discussion of ϵ and β2.
Now this identification of qualitatively distinct behaviors is
derived from intrinsic dispersion properties. It should also be
noted that the added mechanical dispersivity is anisotropic
with δlk=δl⊥ ≳ 3 for the “wedged open” arrangements
(n=N ≥ 3), and larger still for the dilute packing
(n=N ¼ 1=3) where the transverse dispersion changes much
less than the longitudinal dispersivity does. This may
indicate small overlap of flow disturbances around plugged
pores, in the dilute regime.
In conclusion, this Letter determines the intrinsic dis-

persivity of a class of bidisperse packings with dL=ds ¼ 5,
in the limit where most of the solid matrix is occupied by
the larger spheres. There is evidence for two distinct types
of random arrangements in packings of spheres, above and
below relative sphere density n=N ¼ 1. The packings’
longitudinal and transverse dispersivities—in the advection
dominated regime Pe > 60 for l⊥ and down to lower
velocities for the longitudinal lk—is approximately equal
to that of a RPMS made of large spheres alone, plus some
concentration-dependent, non-negligible, and anisotropic
mechanical mixing in the longitudinal and transverse
directions.
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