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We show that a conformal anomaly in Weyl and Dirac semimetals generates a bulk electric current
perpendicular to a temperature gradient and the direction of a background magnetic field. The associated
conductivity of this novel contribution to the Nernst effect is fixed by a beta function associated with the
electric charge renormalization in the material. We discuss the experimental feasibility of the proposed
phenomenon.
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Dirac andWeyl semimetals are three-dimensional crystals
whose low-energy excitations are solutions of the massless
Dirac equation. The recent experimental realization in a
large family of materials [1–5] has provided unexpected
access to physical phenomena restricted so far to quite
unreachable energy regions as the quark-gluon plasma [6].
Quantum anomalies [7] and anomaly-related transport [8]
are at the center of interest of the actual research (an updated
account is given in the reviews [9,10]).
After intense activity around the experimental conse-

quences of the axial anomaly [11–14] including evidence for
the chiral magnetic effect [15], thermal transport is now
probing gravitational anomalies [16,17]. The main link that
opened the door to study gravitational effects in condensed
matter systems is provided by the Luttinger theory of
thermal transport coefficients [18,19]. He proposes a gravi-
tational potential as the local source of energy flows and
temperature fluctuations. The basic idea is that the effect of a
temperature gradient that drives a system out of equilibrium
can be compensated by a gravitational potential [20]. This
advance completed the condensed matter description of
thermo-electric-magnetic transport phenomena.
A novel anomaly-induced transport phenomenon, the

scale magnetic effect (SME) was described in a recent
publication [21]. Using massless QED as an example, it was
shown that, in the background of an external magnetic field,
the conformal anomaly [22] induces an electric current
perpendicular to the magnetic field and to the gradient of the
conformal factor. The coefficient was fixed by the beta
function of the charge. In this work, we show that a similar
phenomenon will occur in Dirac and Weyl semimetals
driven by a temperature gradient. The anomalous current

J ¼ e2vF
18π2Tℏ

B × ∇T ð1Þ

provides a novel contribution similar to the Nernst effect
occurring at a zero chemical potential. Equation (1) comes
from the original SME with two important additions: First,
the original result, worked out in a conformally flat metric,
has been extended to include smooth deformations from flat
space that will allow us to include material lattice deforma-
tions. The technical details of the derivation are described in
Supplemental Material [23]. Second, we use the Luttinger
construction to trade the conformal factor to a temperature
gradient. Finally, the Fermi velocity of the material vF will
substitute the speed of light c in the conductivity coefficient.
In what follows, we will detail these steps.
The effective description of an interacting Dirac or Weyl

semimetal around a single cone is given by the Lagrangian
of massless QED in a flat Minkowski space-time:

L ¼ −
1

4
FμνFμν þ ψ̄ iDψ ; ð2Þ

where ψ is the Dirac four spinor, ψ̄ ¼ ψ†γ0,D ¼ γμDμ with
the covariant derivative Dμ ¼ ∂μ − ieAμ and the Dirac
matrices γμ, and Fμν ¼ ∂μAν − ∂νAμ is the field strength
tensor of the gauge field Aμ. We notice that the electronic
current Jμ ¼ ψ̄ðγ0; vFγiÞψ is anisotropic. We will obviate
this fact, which does not play a role in this part. The action
S ¼ R

d4xL of Eq. (2) is invariant at a classical level under
a simultaneous rescaling of all coordinates and fields
according to their canonical dimensions:

x → λ−1x; Aμ → λAμ; ψ → λ3=2ψ : ð3Þ
As a consequence of the scale invariance, the stress

tensor of the model (2),

Tμν ¼ −FμαFν
α þ

1

4
ημνFαβFαβ þ i

2
ψ̄ðγμDν þ γνDμÞψ

− ημνψ̄iDψ ; ð4Þ
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is traceless: ðTμ
μÞcl ≡ 0. The scale invariance (3) is broken

by quantum corrections which make the electric charge e ¼
eðμÞ dependent on the renormalization energy scale μ. As a
result, in the background of a classical electromagnetic
field Aμ the expectation value of the trace of the stress-
energy tensor (4) becomes [7]

hTα
αðxÞi ¼

βðeÞ
2e

FμνðxÞFμνðxÞ; ð5Þ

where βðeÞ is the beta function associated with the running
coupling e: βðeÞ ¼ ðde=d ln μÞ. Hereafter, we study quan-
tum effects only in a classical electromagnetic background
of the gauge fields Aμ ≡ Acl

μ .
The conformal anomaly (5) leads to anomalous transport

effects which most straightforwardly reveal themselves in a
conformally flat space-time metric:

gμνðxÞ ¼ e2τðxÞημν; ð6Þ
where τðxÞ is a scalar conformal factor and ημν is the
Minkowski metric tensor.
In a weakly curved (jτj ≪ 1) gravitational background

(6) and in the presence of background magnetic field B, the
conformal (scale) anomaly (5) generates an anomalous
electric current via the SME [21]:

J ¼ −
2βðeÞ
e

∇τðxÞ × BðxÞ: ð7Þ

In the presence of the electric field background E, the
conformal anomaly leads to the scale electric effect

J ¼ σðxÞEðxÞ; ð8Þ
which has the form of the Ohm law with the metric-
dependent anomalous electric conductivity [21]:

σðt; xÞ ¼ −
2βðeÞ
e

∂τðt; xÞ
∂t : ð9Þ

Both anomalous currents (7) and (8) can be described by
the same relativistically covariant expression:

Jμ ¼ 2βðeÞ
e

Fμν∂ντ: ð10Þ

The anomalous currents are generated in a quantum
vacuum so that they emerge at a zero chemical potential
and in the absence of a classical current

Jμcl ¼ −∂νFμν; ð11Þ
in the space where the anomalous current is produced:
JμclðxÞ≡ 0.
Contrary to the axial anomaly, the scale anomaly is not

exact in one loop. In particular, the beta function gets
corrections at all orders in the perturbation theory. The

leading contribution to the current is defined by the
one-loop QED beta function:

β1 loop
QED ¼ e3

12π2
: ð12Þ

In this Letter, we consider the anomalous transport
effects for gapless fermionic quasiparticles, realized in
Weyl and Dirac semimetals, for which the conformal
invariance is unbroken in the infrared region. For massive
Dirac fermions the SME is strongly suppressed [28].
Having in mind condensed matter applications of our

study, in the rest of this Letter we will pay close attention
only to the scale magnetic effect (7). However, we notice
that its electric counterpart has certain interesting properties
as well. For example, contrary to the usual Ohm conduc-
tivity, the anomalous conductivity (9) of the scale electric
effect (8) may take negative values. The negative vacuum
conductivity, which may play a role in the early Universe,
has also been independently obtained in calculations for
fermionic [29,30] and bosonic [31] electrically charged
particles in expanding de Sitter space via the Schwinger
pair-production mechanism.
Now let us consider possible thermal effects which may

play a role here. The basic idea is that the effect of a
temperature gradient that drives a system out of equilibrium
can be compensated by a gravitational potential Φ [18,19]:

1

T
∇T ¼ −

1

c2
∇Φ; ð13Þ

where c is the speed of light. For weak gravitational fields,
the gravitational potential Φ, to leading order, is related to
the metric as follows:

g00 ¼ 1þ 2Φ
c2

; ð14Þ

while other components of the metric tensor are unmodi-
fied. This metric is not conformally flat. To get our result,
Eq. (10) needs to be generalized to an arbitrary background
metric. The technical derivation is given in Supplemental
Material [23]. We can see that the electric current induced
by the conformal effects with the metric (14) is determined
by Eq. (7) with the factor τðxÞ≡ φðxÞ given by the last
three equations in Supplemental Material [23]:

φðxÞ ¼ −
ΦðxÞ
3c2

: ð15Þ

In particular, for a time-independent gravitational potential
Φ the scale electric effect (8) is absent. Thus, the current
density given by the conformal anomaly is

J ¼ CconfB × ∇T: ð16Þ
The conformal anomaly leads to a Nernst effect (16) with
the coefficient described by the QED beta function (12):
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Cconf ¼
2βðeÞ
3e

≡ e2c
18π2Tℏ

; ð17Þ

where we have restored the powers of ℏ and c. A similar
strategy has been used in Ref. [32] to derive a new
correction to the chiral vortical effect that arises in the
presence of a temperature gradient.
To take into account the Fermi velocity, we will now

restore all ℏ and c in the fermionic part of Lagrangian (2) in
the SI system of units. The result (16) and (17) corresponds
to the fermionic Lagrangian

L ¼ ψ̄

�
γ0iℏ

∂
∂tþ cγðiℏ∇ − eAÞ

�
ψ ; ð18Þ

where we identified Aμ ¼ ð0;AÞ and set A0 ¼ 0, as it does
not affect the scale magnetic effect. Therefore, we conclude
that the c in the numerator of the anomalous current (16)
and (17) is the cwhich appears in the spatial derivative term
of the Lagrangian (18).
Taking into account that the fermionic Lagrangian of

Dirac and Weyl semimetals is given by Eq. (18) with the
substitution c → vF,

L ¼ ψ̄

�
iγ0ℏ

∂
∂tþ vFγðiℏ∇ − eAÞ

�
ψ ; ð19Þ

we get our main result (1) by making the appropriate
change in Eqs. (16) and (17).
To estimate the order of magnitude of the proposed

effect, we have to remember that the Nernst effect is
defined in open-circuit conditions, J ¼ 0, thus appearing a
voltage drop across the sample:

Ji ¼ σijEj þ L12
ir ð−∇rTÞ ¼ 0 ð20Þ

(the notation Lab
ir for transport coefficients is standard,

and we have, for instance, L11
ir ¼ σir. See, e.g., [33] for a

modern reference). The induced electric field is, thus,

Ej ¼ ρjiL12
ir ð−∇rTÞ; ð21Þ

where ρji ¼ ðσ−1Þji is the resistivity tensor. For definitive-
ness, let us choose the gradient of temperature to point, say,
along the x direction, ∇1T, and the magnetic field B to
point along z as it is shown in Fig. 1. Then from Eq. (1) the
only component of the tensor L12

ir is

L12
21 ¼

e2vFB3

18π2ℏT
: ð22Þ

Under these conditions, two coefficients are usually
defined. The Ettingshausen-Nernst coefficient is defined as

S11 ≡ E1

B3∇1T
¼ ρ12L12

21

B3

; ð23Þ

and the Nernst coefficient is as follows:

S12 ≡ E2

B3∇1T
¼ ρ22L12

21

B3

: ð24Þ

In general, for three-dimensional (isotropic) metals, we
have

ρ22 ¼
σ0

σ20 þ σ2H
; ρ12 ¼

σH
σ20 þ σ2H

; ð25Þ

where σ0 is the longitudinal conductivity and σH is the
transverse (Hall) conductivity. The longitudinal transport in
undoped Weyl semimetals is strongly suppressed due to the
absence of free carriers (transport coefficients are propor-
tional to the chemical potential [33]), and the current is
carried by counterpropagating electrons and holes [34].
However, at a zero chemical potential, Weyl semimetals
have a finite topological anomalous Hall current:

J ¼ e2

2π2ℏ
b × E; ð26Þ

where b is the separation between Weyl nodes. Choosing b
to point along the z direction, we have

σ0 ≪ σH ¼ e2

2π2ℏ
jbj; ð27Þ

so ρ22 ∼ ðσ0=σ2HÞ and ρ12 ∼ ð1=σHÞ.
The Ettingshausen-Nernst coefficient is then, approx-

imately,

S11 ≡ E1

B3∇1T
¼ ρ12L12

21

B3

∼
vF

9jbjT : ð28Þ

The Nernst coefficient S12 appears to be strongly sup-
pressed due to σ0 ≪ σH. For this reason, we propose to
measure S11. A small comment is in order here: It might be
surprising that a transverse current as (1) leads to a
longitudinal measurable quantity as it is S11. The reason

FIG. 1. The setup of the Nernst-Ettingshausen effect in open-
circuit conditions. Voltage drops are induced by simultaneously
applying an external magnetic field and a temperature gradient.
Depending on whether the measured voltage is perpendicular
(VT) or parallel to the gradient of T (VL), we speak about Nernst
or Nernst-Ettingshausen effects (see the details in the main text).
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is that, due to the way the thermoelectric transports
presented here are measured, the current in (1) is entangled
to the resistivity tensor, which is dominated by the trans-
verse Hall component, leading to a large coefficient S11
compared with S12.
For typical Fermi velocities in Weyl semimetals,

vF ∼ 105 m=s, T ∼ 10 K, and separation of Weyl nodes
j2bj ∼ 0.3 Å−1, the Nernst coefficient divided by T is of the
order of S11=T ∼ 0.6 μV=TK−2, which is within the range
of current Nernst measurements [35].
The importance of the Nernst and other thermomagnetic

effects for thermoelectric power generation justifies the
interest of the analysis of new sources even if small in
magnitude. The Nernst effect was explored in the early
stages of novel Dirac materials [33,36–39], and some
experimental results are already available in the literature
[35,40]. In most of the theoretical works, the main
ingredient are the magnetization of the materials or the
Berry curvature acting as an effective magnetization in a
semiclassical analysis. The Nernst effect described in the
present Letter appears in the linearized model at a zero
chemical potential, and it is attached to the scale anomaly
and not to the chiral anomaly. This observation makes the
presence of a nontrivial Berry curvature and the described
effect not obvious from the effective action formalism that
we use in the present Letter. A calculation of the same
response by using the Kubo formula and the Landau levels
formalism is in progress [41].
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