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Phononic crystals and metamaterials can sculpt elastic waves, controlling their dispersion using different
mechanisms. These mechanisms are mostly Bragg scattering, local resonances, and inertial amplification,
derived from ad hoc, often problem-specific geometries of the materials’ building blocks. Here, we present
a platform that ultilizes a lattice of spiraling unit cells to create phononic materials encompassing Bragg
scattering, local resonances, and inertial amplification. We present two examples of phononic materials that
can control waves with wavelengths much larger than the lattice’s periodicity. (1) A wave beaming plate,
which can beam waves at arbitrary angles, independent of the lattice vectors. We show that the beaming
trajectory can be continuously tuned, by varying the driving frequency or the spirals’ orientation. (2) A
topological insulator plate, which derives its properties from a resonance-based Dirac cone below the Bragg

limit of the structured lattice of spirals.
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Phononic crystals and metamaterials have been used to
manipulate waves in a wide frequency spectrum: from heat
propagation at very high frequencies, ultrasonic waves at
high frequencies, and audible sound and earthquake exci-
tations at low or very low frequencies [1]. They generally
consist of two- or three-dimensional unit cells arranged in
periodic arrays. The advantage of designing building
blocks in fundamentally discrete materials—like phononic
materials—is the ability to engineer their dispersion rela-
tion. A common method to control the propagation or
reflection of waves in dispersive systems is the opening of
frequency band gaps, where waves cannot penetrate the
material bulk. Moreover, these frequency bands can have
unconventional characteristics, such as directing radially
emitted waves to propagate only along predefined line(s)
(wave beaming) [2], or along the edges of a medium,
without being susceptible to imperfections or backscatter-
ing (waves with topological protection) [3].

Generally, opening a band gap can be accomplished
utilizing three different physical mechanisms: (i) Bragg
scattering (BS), where a periodic medium can inhibit waves
whose wavelength is on the order of the mediums’ spatial
periodicity (i.e., the Bragg limit) through destructive
interferences [4,5]. This is usually achieved by having
two materials within the unit cell or a single material with
holes. (ii) Local resonances (LR), where wave propagation
can be restricted using an inherent resonance in the unit
cell, decoupling the unit cell size from the wavelength of
the attenuated waves and thereby enabling subwavelength
wave control [6]. This resonance-based mechanism does
not require the lattice to be periodic [7]. (iii) Inertial
amplification (IA), where a resonator is connected to the
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unit cell in multiple points. The band gap opens due to the
amplification of the effective inertia of the resonator [8].
The resonators’ connections are usually achieved with
hinges and/or rigid rods. All these band gap opening
mechanisms can be employed to engineer dispersion and
manipulate elastic waves for a multitude of applications,
such as focusing, beaming, and insulation [9].

The design approaches for inducing each of these band
gap mechanisms are vastly different (from material layering
and holes for BS, pillar coatings and heavy inclusions for
LR, to hinged mechanisms for IA) [9]. Additionally, the
design of specific band properties—such as doubly neg-
ative properties—adds further complexity [10]. The need
for a systematic design methodology—able to generate a
plethora of physical phenomena for a variety of demanding
applications—is apparent. Here, we present a platform for
realizing different phononic metamaterial physics based on
Archimedean spirals. Through the use of simple variations
of the spirals’ geometrical parameters and symmetry, we
show that it is possible to realize BS, LR, and TA, with no
layering, coating, added masses, or hinges. We present two
proof-of-concept realizations for applications: (1) a plate to
beam vibrations and (2) a plate with topological properties.
In the first example, we show that it is possible to beam
elastic waves in different directions, which can be changed
continuously and independently of the lattice geometry.
The beaming angle and the beam’s focusing width vary as a
function of the driving frequency and spirals’ orientation.
In the second example, we present the first topological
metamaterial featuring a resonance-induced Dirac cone
below the Bragg limit of the structured material. The
presented platforms can integrate elementwise, real-time
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FIG. 1. Spiral-based structured plates. (a) An Archimedean
spiral with its parameters. (b) Structured plate composed of a
periodic array of spirals. White areas indicate void. (c) Variations
of the spiral geometries with the corresponding flexural band
gaps shaded in green. The band gaps span two decades of
frequencies, while modifying the plate thickness or the lattice
spacing. Unit cells exhibiting Bragg scattering are shown in
purple and local resonances in red.

tunability [11] and can be easily produced by additive [11]
or subtractive [12] manufacturing. In addition, the planar
nature of the geometry is suitable for miniaturization,
where optomechanical coupling is possible [13]. At the
nanoscale, the subwavelength resonances can also have
implications on the thermal conductivity of structured foils
[14], where beaming or topological insulation for heat
phonons is highly desirable.

Spirals are common in nature and art [15] and some of
their mathematical bases have been known for millennia
[16]. In phononics, spiral-based piezopatches enabled
directional excitation and sensing [17,18]. Unispiral geom-
etries embedded with heavy double-pillared inclusions
have been used to show local resonance [19], and other
chiral structures have already displayed negative refraction
[20,21] and wave beaming [22]. Recently, the phononic
tunability of spiral-based metamaterials has been demon-
strated [11,12,23] and used to realize the first exclusively
phononic transistor [12].

The polar representation of an Archimedean spiral
[Fig. 1(a)] is r(s) = R— (R —r)s, ¢(s) = 2zns, where r
is the inside radius, R is the outside radius, 7 is the number
of turns, and s € [0;1]. Such spirals can be repeated
periodically in any lattice configuration, producing a
plethora of phononic properties. We start with a square
lattice [Fig. 1(b)] with four concentric spirals (C4 symmetry,
with dispersion calculated along I'-X-M-I" [24]) as voids
within a solid plate. To characterize the dispersion proper-
ties of the different unit cells and identify the band gap
locations, we model the material using the elastic wave
equations for heterogeneous media [25] in an infinite lattice
and apply Bloch boundary conditions [26]. We solve the
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FIG. 2. Band gap opening mechanisms. Normalized dispersion
curves with both the attenuated (orange) and propagating (blue
for in-plane and green for out-of-plane) waves. The correspond-
ing unit cells are in the inset. Band gaps are shaded in green.
(a) Bragg scattering, (black line) flexural dispersion of the virgin
material, (b) local resonance, (c) inertial amplification, and
(d) Bragg scattering.

resulting equation using the finite element method
(comsoL). By varying the spirals’ parameters, we open
band gaps spanning more than 2 orders of magnitude in
frequency for a constant plate thickness and lattice spacing
[Fig. 1(c) and Video 1 in Supplemental Material [27]].

To identify the band gap opening mechanism and
determine its Bragg scattering limit, we plot both propa-
gative [i.e., real wave numbers [Figs. 2(a)-2(d), green and
blue dots]] and attenuating [i.e., imaginary wave numbers
[Figs. 2(a)-2(d), orange dots]] waves. While the Bragg
limit in a given homogeneous medium has a fixed fre-
quency per polarization, the introduction of other materials
(or voids) within the unit cell alters this frequency signifi-
cantly [Fig. 2(a), black lines versus green dots]. To center
that frequency around 1, we define Q = f/fgq,, Where
SBrage 18 the computed Bragg limit for each unit cell
(Fig. S1 of Supplemental Material [27]).

By incorporating a minimal spiral void, we induce
a minute Bragg scattering partial band gap at Q=1
[Fig. 2(a), green shaded area] with a Bragg-like semi-
circular band within the attenuation profile [Fig. 2(a),
orange dots]. The resulting unit cell is too stiff to support
resonances; however, the impedance mismatch between the
homogeneous material and the void acts as a periodic
scatterer for elastic waves. By increasing the number of
turns (n), four curved beams emerge within the unit cell,
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acting as local resonators. This opens a subwavelength
band gap, with inverted resonance peaks within the
attenuation profile [Fig. 2(b)]. By increasing the inner
radius of the spiral (r), a single resonant mass emerges at
the spiral core connected through four beams creating an
inertially amplified unit cell [Fig. 2(c)]. This opens a deep
subwavelength band gap with more pronounced inverted
peaks within the attenuation profile [20,28]. By increasing
the outer radius (R), the spiral void intersects with the unit
cell boundary. The system is similar to a diatomic spring-
mass-lattice [29], explaining the opening of multiple Bragg
scattering band gaps with semicircular attenuation profiles
[Fig. 2(d)]. Surprisingly, (without normalization) the fre-
quency of the first BS gap in [Fig. 2(d)] is similar to that of
the LR geometry [Fig. 1(c)], reiterating the influence of
geometry on the Bragg limit. We further investigate the
effect of the parameters of the spiral pattern on its phononic
band gaps (Fig. S3 of Supplemental Material [27]).

In addition to the geometric parameters of the individual
spirals, the underlying unit cell symmetry plays a critical
role in its phononic dispersion properties. An asymmetry
within the unit cell, generating partial band gaps and pass
bands, can lead to wave beaming with preferential paths for
waves within a homogeneously structured media. Such
irregular transmission of waves is commonly related to the
static anisotropy of the material. In some cases, a change in
beaming direction requires a complete redesign of the
lattice [2,22,30,31]. In our platform, we demonstrate the
ability to continuously tune the beaming direction without
the need for redesigning the structure or changing of the
lattice vectors.

To demonstrate frequency-dependent beaming, we
utilize a unit cell created by two concentric spiral voids
[Fig. 3(a), inset], resembling a resonator connected within
the unit cell in two points (resembling an inertially
amplified geometry). This design allows beaming to occur
at subwavelength frequencies (i.e., with signal’s wave-
length larger than the spiral’s outer diameters) (Figs. S2(a)
and S2(b) in Supplemental Material [27]). IA not only
decouples the operational frequency from the unit cell size
but also relies on resonances that are only excited by a
specific wave propagation direction. The design of the
spirals’ orientation with respect to the propagation direction
controls the beaming trajectory (Fig. S4 [27]). The intrinsic
chiral nature of the spirals enables dynamic tuning of the
beaming direction varying the excitation frequency (Fig. S4
[27]). Furthermore, it is possible to vary the beaming
direction controlling the spiral’s resonance with an applied
external field [11].

To identify the frequencies of interest we consider the
first quadrant of the «, and «, space. The dispersion relation
for flexural waves of the considered unit cell shows a
deviation between the dispersion branches along the
symmetry lines I'-X (blue) and I'-Y (orange) [Fig. 3(a)].
‘We harness this deviation, manifested in the same unit cell,
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FIG.3. Wave beaming. (a) Dispersion relation for elastic waves
of the inset unit cell. (b) Isofrequency plot for the first Brillouin
zone. The dashed gray lines indicate the unit cell edges in
reciprocal space. (c) Frequency response of a finite plate, under
out-of-plane harmonic excitation at 530 Hz and (d) 1570 Hz with
absorbing boundary conditions.

to show wave beaming at two different frequencies: (i) in a
pass band, at f; = 530 Hz (red line), and (ii) in a stop
band, at f, = 1570 Hz (green line). A partial band gap
exists at f; in the I'-Y direction, with a pass band at f
elsewhere. At f,, a partial pass band exists in the I'-Y
direction, with a band gap elsewhere. The projection of the
eigensolutions on the full reciprocal space (i.e., the iso-
frequency contours) is plotted in Fig. 3(b). At f; (red) there
exists no propagation along the I'-Y direction, with a strong
preference for the waves to propagate along the diagonal of
the first quadrant of the reciprocal space. At f, (green), the
propagation is confined only along the I'-Y direction. The
response of a finite sample with absorbing boundary
conditions [Figs. 3(c) and 3(d)]—driven harmonically
out of plane in the center, at f; and f, separately—
indicates a response similar to the infinite medium pre-
dictions. Within a pass band, at f, there exists a strong
confinement of waves along a line, while waves still
propagate radially in the plate. Within a band gap, at f5,
the wave propagation is also confined along a line;
however, no propagation is allowed anywhere else in
the plate.

The lattice vectors that govern the spacial packing of
the spiral patterns can have a significant influence on BS
band gaps. As for the band gaps resulting from resonances
(LR and IA), periodicity is less important. However, some of
the emerging phonon physics, such as phononic topological
insulators [32-36], can benefit greatly from both periodicity
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and resonances resulting in subwavelength topologically
protected band gaps. Topological insulators operating at
subwavelength frequencies have been shown for both
photonics and airborne acoustics [37,38]. Realizing such
topological insulators for elastic phonons can redirect waves
much larger than the unit cell size. At small scales,
resonance-based topological insulators may have implica-
tions on resulting material thermal conductivity [14].

One avenue to design a subwavelength topological
insulator is the opening of a band gap within a degenerate
(duplicate) Dirac cone. First, we create a single Dirac cone
for flexural waves, which is known to exist in a hexagonal
packing. We utilize a hexagonal unit cell with six concen-
tric spirals, resembling a resonator connected at six points
to the unit cell (C¢ symmetry). This unit cell leads to a Dirac
cone at f = 873 Hz [Fig. 4(a)] below the Bragg limit
(1661 Hz) [Fig. S4(c) of Supplemental Material [27]]. We
choose the unit cell thickness, ¢, = 2 mm, to ensure a full
band gap for in-plane waves around f [Fig. 4(a)]. In order
to duplicate the Dirac cone, we consider a supercell (red)
encompassing the original unit cell (blue) in addition to
one-third of each of the neighboring unit cells [Fig. 4(b),
left] [10,39]. Such an artificial enlargement of the unit cell
boundaries results in doubling the branches within the
dispersion curves through the folding of the cell’s Brillouin
zone [Fig. 4(b), right]. By modifying the spiral pattern of
the original (blue) and the neighboring (red) unit cells—
only breaking its translational symmetry—the supercell
becomes the smallest unit cell. The resulting unit cell
manifests a topologically protected band gap at the I" point
[10,34], as a degenerate, yet inverted, mode exists at both
edges of the gap [Fig. 4(c)]. By tiling two variations of the
unit cell (as material I and II), a topological waveguide
emerges at the interface [34]. To demonstrate the existence
of a topological state at the interface between the two
materials, we first calculate the dispersion curves of a
quasifinite sample (periodic in one direction and finite
along the other) composed of the two materials [Fig. 4(d)].
The two bands at the edge of the gap connect through two
straight lines crossing at the I" point, with a mode shape
showing clear localization of the wave at the interface
[Fig. 4(d), right]. We simulate a plate composed of the two
materials, in Fig. 4(e), to study the steady-state response of
waves confined along the interface between the two
materials (highlighted with a dashed black line) at f.

In summary, we show that the introduction of spiral
patterns can greatly alter the dispersion characteristics of
phononic media. By introducing these spiral patterns as
voids within solid plates, we realize different phononic
band gaps: Bragg scattering, local resonance, and inertial
amplification. We capitalize on the internal unit cell
symmetry, to create partial propagating bands within full
band gaps and demonstrate two classes of subwavelength
wave beaming, one within a propagating frequency and one
within an attenuating one. The chirality of the structure
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FIG. 4. Topological insulators. (a) Dispersion curves of the
hexagonal unit cell in the inset with a flexural subwavelength
Dirac cone highlighted in red and in-plane band gap highlighted
in gray. Frequencies above the Bragg limit are hashed in purple.
(b) Left: Supercell that includes the original hexagonal unit
cell (blue) with additional neighboring spirals (red hexagon) in
real space. Right: Folded symmetry line (I'-N-L-I') for the
modified spiral patterns in reciprocal space. (c) Two dispersion
curves of two supercells with small variations between the blue
and red spirals (supercell I, ny,. = 1.02n) and (supercell II,
Npe = 1.031, Wye = Wreq = 1.068w). The insets show the
mode shapes of each unit cell at the edge of the topological
gaps for super cells. (d) Dispersion curves for a quasifinite
(periodic in one direction and finite with 27 spiral unit cells in the
other) line of material I and II. In addition to trivial edge bands
(gray), the previously observed band gap is closed by two
topologically protected counterpropagating modes. The mode
shape corresponding to the circled dispersion point (red), with the
interface between the materials indicated by a black dashed line.
(e) The mode shape at frequency f = 857 Hz for a finite sample
composed of materials I and II.

appears to be at the origin of the frequency sensitivity of
the beaming and could be of further use for other
applications. Moreover, we alter the underlying lattice
symmetry to create subwavelength-induced topologically
protected band gaps. Our demonstrations show the poten-
tial of coupling various wave phenomena with a unified,
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easy-to-design and fabricate building blocks, enabling the
design of novel phononic material plates. The presented
advances highlight the versatility of spirals-based phononic
systems.
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