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We show that the recently introduced iterative backflow wave function can be interpreted as a general
neural network in continuum space with nonlinear functions in the hidden units. Using this wave function
in variational Monte Carlo simulations of liquid 4He in two and three dimensions, we typically find a
tenfold increase in accuracy over currently used wave functions. Furthermore, subsequent stages of the
iteration procedure define a set of increasingly good wave functions, each with its own variational energy
and variance of the local energy: extrapolation to zero variance gives energies in close agreement with the
exact values. For two dimensional 4He, we also show that the iterative backflow wave function can describe
both the liquid and the solid phase with the same functional form—a feature shared with the shadow wave
function, but now joined by much higher accuracy. We also achieve significant progress for liquid 3He in
three dimensions, improving previous variational and fixed-node energies.
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Explicit forms of many-body ground state wave func-
tions have played an important role in the qualitative and
quantitative understanding of many-body quantum sys-
tems. Whereas pairing functions based on Bogoliubov’s
theory [1] have provided a good description of superfluidity
and superconductivity of dilute gases, a full pair-product
(Jastrow) wave function is usually the starting point for a
microscopic description of liquid helium, the prototype of a
strongly interacting, correlated quantum system. Starting
from the first variational Monte Carlo (VMC) calculations
of McMillan [2], liquid and solid helium—bosonic 4He
as well as fermionic 3He—have triggered and challenged
microscopic simulations.
For systems described on a lattice, approaches based

on matrix product and tensor network states [3–7] have
provided an essentially exact description of many generic
low dimensional systems. Very recently, neural network
states have been shown to lead to excellent results in one
and two dimensional lattice models [8–11]. However,
generalization of these states to continuous systems [12]
in two and three dimensions is difficult or still lacking.
In this Letter we elaborate on a recently introduced [13]

class of wave functions in continuous space that includes
sets of auxiliary coordinates obtained with iterated back-
flow transformations. Originally introduced from the per-
spective of Fermi liquid theory to improve the ground state
energy of liquid 3He in two dimension, the underlying
structure is shown here to be more general, reflecting the
evolution in imaginary time, and leading to an accurate
description of a broad class of quantum liquids and solids.

The wave function is now viewed as a neural network
where the hidden units of layerM are obtained iteratively as
a function of the coordinates in layer M − 1, with layer
M ¼ 0 corresponding to the physical particles. In contrast
to neural networks on a lattice, all the functions involved
here are in general nonlinear. The network parameters
describing the various functions are optimized within VMC
simulations.
We apply our description to liquid-solid 4He and liquid

3He, where we obtain a systematic lowering of the energy
as we increase the number of layers. For the bosonic
systems we benchmark the quality with exact results
obtained by stochastic projection Monte Carlo methods.
We further show that our wave function is able to describe
equally well the fluid and the solid phase with the same
functional form, symmetric and translationally invariant.
Since the effective interaction between two helium

atoms, vðrÞ, is quantitatively well known, computations
can be rather directly compared to experiments. During the
years several types of wave functions have been used to
simulate 4He. In the first VMC simulations [2], the wave
function took into account just two-body interparticle
correlations; these wave functions were then generalized
to include three-body and higher correlations, ΨTðRÞ ∝
exp½−UðRÞ�, where UðRÞ denotes a general, symmetric
correlation function, and R≡ ðr1; r2;…; rNÞ denotes the
coordinate vector of the particles [14,15].
Exact results for bosonic 4He can be obtained improving

stochastically the wave function with projector Monte Carlo
techniques such as diffusion Monte Carlo (DMC) [16] or
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variational path integral methods [17–19]. Starting from any
trial wave function, ΨTðRÞ, its propagation in imaginary
time, τ, can be written as

ΨτðRÞ ∝
Z

dR0GðR;R0; τÞΨTðR0Þ: ð1Þ

For small τ, the functional form of G is given by

GðR;R0; τÞ ∝ exp ½−λðR −R0Þ2 − VðRÞ� ð2Þ

where λ ¼ m=2ℏ2τ and VðRÞ is given by the interparticle
potential, VðRÞ ¼ τ

P
i<jvðrijÞ. Large projection times

can be reached by iterative application of the short time
propagator; the integrals can then be sampled numerically
via projection Monte Carlo calculations.
Alternatively, we can consider Eqs. (1) and (2) as an

improved variational ansatz for our ground state, the shadow
wave function (SWF) [20], and minimize the energy with
respect to variations in λ, V, andU. In contrast to the explicit
trial wave functions, ΨT , used in previous VMC calcula-
tions, SWFs are able to describe the melting from solid to
liquid 4He without modification of their structure.
Shadow and projector Monte Carlo methods explicitly

depend on auxiliary (or hidden) variables,R0. The resulting
wave function thus forms a network where the hidden
variables are connected to the input layer, R. However, in
contrast to many neural network systems on a lattice, the
variables inside each layer are connected to each other via
the many-body potentials, Vð·Þ and Uð·Þ [see Fig. 1(a)].

Within SWF and projection Monte Carlo calculations,
the integration over the variables in the hidden layers is
done stochastically which in general leads to a sign (phase)
problem whenever G or ΨT carries a sign (phase) as for
fermionic or time-dependent problems [21–23]. Analytical
integration over the hidden layer then becomes extremely
important, since the evaluation of the resulting explicit
form may be possible within standard VMC without a
sign problem.
Since the integration over the hidden variables cannot be

done analytically in our case, we approximately perform
the integrations in Eq. (1) expanding UðR0Þ around some
positions Q, which will be fixed later. For large λ, we can
truncate the expansion after the linear term

ΨτðRÞ ≈
Z

dR0 exp ½−λðR0 −Rþ∇U=2λÞ2 − VðRÞ�

× exp ½−U − ðR −QÞ ·∇U þ ð∇UÞ2=4λ� ð3Þ

where U and ∇U are evaluated at Q, implicitly defined by

Q ¼ R −∇UðQÞ=2λ: ð4Þ

Performing the Gaussian integration, we get

ΨτðRÞ ∼ exp ½−VðRÞ −UðQÞ − ½∇UðQÞ�2=4λ�: ð5Þ

The resulting wave function can then be put into the form

ΨτðRÞ ¼ Φð0ÞðRÞ ·Φð1ÞðQÞ ð6Þ

where ΦðnÞð·Þ ¼ exp½−UðnÞð·Þ� is a correlated wave func-
tion containing generalized many-body Jastrow potentials,
UðnÞð·Þ. Although our derivation suggests explicit expres-
sions for UðnÞ and Q in terms of V, U, and λ, we rather
retain only the functional form, and simplify Eq. (4) by
replacingQ withR in the right-hand side. The correspond-
ing parameters are then optimized, such that the wave
function, Eq. (6), minimizes some target function, usually
taken as the energy or the variance of the local energy [24].
We can further improve our wave function by iteratively

applying the propagator toΨτ which approximately leads to
a rather simple, iterative structure

ΨðMÞðRÞ ¼
YM
n¼0

ΦðnÞðQðnÞÞ ð7Þ

where M is the number of iterative backflow transforma-
tion. At each level, n, new backflow coordinates are
introduced

QðnÞ ¼ Qðn−1Þ þ∇Uðn−1ÞðQðn−1ÞÞ ð8Þ

FIG. 1. (a) Schematic representation of a SWF as a nonlinear
network. The input layer is formed by the coordinates of the wave
function, R, and we have to integrate over the coordinates in the
hidden layer, R0. Input and hidden layer coordinates are con-
nected via a Gaussian, whereas the coordinates inside each layer
are connected by the many-body correlation potentials, VðRÞ and
UðR0Þ. Including several hidden layers correspond to the appli-
cation over several projection steps. (b) Structure of the iterated
backflow wave function obtained after approximated integration
over the hidden layers of SWF and projector Monte Carlo wave
functions. Each layer introduces a new set of nonlinear functions
UðnÞ (here, two- and three-body Jastrow forms, UðnÞ

2 , UðnÞ
3 ) and

backflow coordinates QðnÞ which depend only on the coordinates
of the previous layers Qðm<nÞ.
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which are built from the backflow and Jastrow potentials of
the previous level, Qðn−1Þ and Uðn−1Þ, respectively, starting
fromQð0Þ ≡R. For our explicit calculations, we have used
the simplest possible two- and three-body forms in all the
generalized Jastrow factors UðnÞ ≡ − logΦðnÞ which are
parametrized and optimized independently on each level, n.
The approximate integration of the hidden layer structure

of SWF and projector Monte Carlo wave function can
again be considered as a nonlinear network, represented in
Fig. 1(b).
Based on hydrodynamic considerations, backflow has

been originally introduced to improve the excitation spec-
trum of superfluid 4He [27,28], but its importance has soon
been recognized for fermionic systems [29] where backflow
wave functions reduce the fixed-node error in a broad class
of systems. Our heuristic derivation above suggests that the
network based on iterative backflow transformations should
rather be considered as a generic description for quantum
systems in continuous space. However, one may ask if the
network can be simplified or made more efficient using a
formulation closer to a restricted Boltzmann machine
recently applied to discrete lattice systems [8,11].
In order to benchmark the performance of the network,

we first focus on a system of N 4He atoms in a cubic
simulation box with periodic boundary conditions. The
Hamiltonian for this system is given by

H ¼
X
i

p2
i

2m
þ
X
i<j

vðrijÞ ð9Þ

with the HFDHE2 potential [30] for vðrÞ.
In the network used to describe the ground state of

bosonic 4He, each layer n contains two- and three-body
correlations in the generalized Jastrow form

ΦðnÞðXÞ ¼ e−ðU
ðnÞ
2

ðXÞþUðnÞ
3

ðXÞÞ ð10Þ

with

UðnÞ
2 ðXÞ ¼

X
i<j

uðnÞ2 ðxijÞ;

UðnÞ
3 ðXÞ ¼

X
i

GðnÞ
i ðXÞ ·GðnÞ

i ðXÞ;

GðnÞ
i ðXÞ ¼

X
j

ðxi − xjÞζðnÞðxijÞ; ð11Þ

characterized by one-dimensional functions, uðnÞ2 ðxÞ and
ζðnÞðxÞ. Here, the coordinates X refer to either the bare
atomic coordinates (R≡Qð0Þ) or the transformed ones
(QðnÞ, n ≥ 1) which are obtained via

qðnÞ
i ¼ qðn−1Þ

i þ
X
j

ðqðn−1Þ
i − qðn−1Þ

j ÞηðnÞðqðn−1Þij Þ: ð12Þ

The representations of the one-dimensional functions, uðnÞ2 ,
ζðnÞ, and ηðnÞ, establish the network parameters determined
by energy minimization using the stochastic reconfigura-
tion method [31].
Although each hidden layer increases the number of

variational parameters, the scaling of the computational
effort for evaluation of the wave function with respect to the
number of atoms, N, does not increase [13].
In Fig. 2 and Table I, we show the error in the ground

state energy obtained for N ¼ 64 4He atoms in three
dimensions at equilibrium density (ρ ¼ 0.0218 Å−3), close
to freezing (ρ ¼ 0.0262 Å−3), and for negative pressure
(ρ ¼ 0.0196 Å−3). The error of the Jastrow or Shadow [32]
wave functions ranges in the tenths of K, already reduced
significantly by the first backflow layer. Additional layers
of backflow transformations bring the error down to a few
hundredth K. Zero-variance extrapolation of the energy
with a leading linear term [13,24] further approaches the
exact ground state energy, the largest error being −0.02 K
at the highest density.
A roughly tenfold increase in accuracy is also obtained in

the pair correlation function gðrÞ; see Fig. 3.
In order to describe freezing, the liquid and the solid

phases are typically described by different functional
forms within VMC, as the usual Jastrow wave function
is in general unable to localize the atoms in a crystal. This
bias propagates even to projector Monte Carlo methods
(DMC) based on importance sampling and is only fully
eliminated using path integral methods [17,19,33,34].
In order to correctly describe the solid phase within
DMC, one usually uses an unsymmetrized Nosanow wave
function [35] where the atoms are individually tied to
predetermined lattice sites by a one-body term. In this
setup, the Jastrow (Nosanow) wave function describes a

10−3

10−2

J BF1 BF2 BF3 BF4

ρ=0.0262 Å−3
ρ=0.0218 Å−3
ρ=0.0196 Å−3

Shadow

(E
−

E
0)

/T

FIG. 2. Difference between the variational energy and the exact
value in units of the kinetic energy T for increasing number of
hidden layersM of our nonlinear network function for liquid 4He
in three dimensions starting from a Jastrow wave function (J) with
two- and three-particle correlations, M ¼ 0.
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metastable liquid (solid) phase at densities higher (lower)
than the coexistence region.
One important conceptual progress of SWF was the

possibility to describe both liquid and solid 4He within the
same wave function [20], without explicitly breaking
translational invariance or Bose symmetry. Remarkably,
this feature is shared by our network wave function. In
Fig. 4, we show the performance of the network wave
functions for N ¼ 16 4He atoms in two dimensions around
the liquid-solid transition [36]. Again, our backflow net-
work function achieves a roughly tenfold reduction of the
variational error with respect to Shadow [37], Jastrow, and
Nosanow wave functions—over a large density range and
across a phase transition [38]. For the higher density,
ρ ¼ 0.09 Å−2, the pair distribution function gðx; yÞ is
hardly distinguishable from the Nosanow (bona fide solid)
result. For the lowest density gðx; yÞ turns into a radial,
liquidlike pair distribution function, while at coexistence it
is intermediate between the Nosanow and Jastrow results,
much closer to the former [24].

Up to now, we have demonstrated the quality of our
backflow network to describe bosonic quantum systems,
where stochastic projection Monte Carlo methods provide
exact results for benchmarking. Now, we show that our
approach significantly improves the description of strongly
correlated fermions in three dimensions, similar to previous
results [13] obtained for two dimensional liquid 3He.
In Table II we list estimates of the ground-state energy
obtained with different wave functions for N ¼ 66 3He
atoms in three dimensions, at equilibrium and freezing
density. The previous best estimates [15] were obtained
introducing explicit correlations up to four particles in the
Jastrow factor and three particles in the backflow coor-
dinates. The results from Ref. [15] included in Table II refer
to a spin-singlet pairing wave function, which performs
marginally better than a Slater determinant of plane waves.

TABLE I. Ground-state energy per particle EVMC=N, in K, of
liquid 4He in three dimensions at different densities, obtained
with VMC using different trial wave functions: Jastrow wave
function without backflow (J), and with n iterated backflow
transformations (BFn). Variational results obtained with shadow
wave functions [32] (ESWF=N) and exact DMC results (EDMC=N)
are also shown for comparison. We also report the variance
σ2 ¼ hðH − EVMCÞ2i of EVMC and the extrapolation of EVMC=N
to zero variance [13].

ρ ¼ 0.0196 Å−3

EVMC=N σ2=N ESWF=N EDMC=N

J −6.8593ð10Þ 14.80 −6.765ð8Þ −7.0243ð6Þ
BF1 −6.9936ð14Þ 3.03
BF2 −7.0076ð15Þ 2.14
Extrap. −7.033ð2Þ

ρ ¼ 0.0218 Å−3

EVMC=N σ2=N ESWF=N EDMC=N

J −6.9137ð10Þ 21.40 −6.937ð6Þ −7.1691ð12Þ
BF1 −7.1204ð12Þ 5.22
BF2 −7.1367ð10Þ 3.30
BF3 −7.1458ð14Þ 2.36
Extrap. −7.169ð3Þ

ρ ¼ 0.0262 Å−3

EVMC=N σ2=N ESWF=N EDMC=N

J −6.0220ð20Þ 49.99 −6.350ð6Þ −6.5921ð20Þ
BF1 −6.4656ð25Þ 11.20
BF2 −6.5230ð17Þ 9.34
BF3 −6.5402ð13Þ 5.84
BF4 −6.5502ð14Þ 6.87
Extrap. −6.615ð2Þ

 2  3  4  5  6  7
r (Å)

0.0

0.5

1.0

1.5

−0.5

0.0

0.5

1.0

g(
r)

10
×

Δg
(r

)

FIG. 3. Pair correlation functions gðrÞ for liquid 4He in three
dimensions at equilibrium density. Dashed lines (left scale) show
variational results without backflow terms (blue) and with three
backflow iterations (red), as well as DMC results (black, barely
visible behind the red dashes; extrapolated estimate [16] using the
BF3 trial wave function). Solid lines (right scale) show a tenfold
magnification of the deviation between the VMC and DMC
results.
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FIG. 4. Error of the ground state energy of liquid and solid 4He
in two dimension in units of the kinetic energy T across the
liquid-solid coexistence region (shaded) [36], using various
wave functions: Shadow [37], Jastrow, Nosanow, and iterative
backflow network (5 iteration layers at coexistence, 4 layers
otherwise).

PHYSICAL REVIEW LETTERS 120, 205302 (2018)

205302-4



They lie between BF1 and BF2, showing that the implicit
inclusion of correlations at all orders through backflow
iteration is more effective than explicit construction of
successive n-order terms.
Due to the lack of exact benchmark results for this

fermionic case, we compare our results to the experimental
equation of state [39]. Although the improvement over
previous variational and fixed-node energies remains sig-
nificant, our best estimate, the extrapolation to zero
variance [24], is higher than the experimental energy by
0.14 K at equilibrium density, and by 0.19 K at freezing.
This discrepancy is surprising, since the error of the zero-
variance extrapolation is of order of 0.01 K for 4He in two
and three dimension and also for small systems of 3He in
two dimensions [13].
In summary, we demonstrated the quality of our back-

flow network for quantitative description of bosonic and
fermionic helium systems. The description of crystalliza-
tion reported here shows that the network accurately
describes spontaneous breaking of translational symmetry,
and this holds true for density modulations induced by
external potentials [24]. Beyond quantum liquids and
solids, the present description provides a systematic way
to improve calculations in the field of ultracold atomic
gases and electronic structure problems [41], as well as a

starting point for exploring its connection to neural network
theory. The accurate description of ground-state properties
further suggests their use as trial wave functions within
time-dependent variational Monte Carlo calculations
[42,43] to study out-of-equilibrium time evolution of
many-body quantum systems in two or three dimensional,
continuous space.
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concerning the relation of backflow and neural network
wave functions and acknowledges support from the
Fondation NanoSciences (Grenoble).
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