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We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy
using Nyquist’s instability criterion. In contrast to typically employed threshold models which consider a
single free-energy source, this method includes the effects of proton and He2þ temperature anisotropy with
respect to the background magnetic field as well as relative drifts between the proton core, proton beam,
and He2þ components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are
unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are
unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton
beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-
kinetic-scale timescales. Unstable spectra are associated with relatively large He2þ drift speeds and/or a
departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra
are also identified.
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Introduction.—Plasma instabilities, wave-particle inter-
actions driven by departures from local thermodynamic
equilibrium, influence the dynamics of nearly collisionless
systems, including those frequently encountered in space
and astrophysical contexts. In order to transfer free energy
from plasma particles to electromagnetic fields and drive
unstable growth, nonequilibrium attributes—including
anisotropic temperatures relative to the local mean mag-
netic field, relative drifts between component distributions,
and more general agyrotropic features—must either con-
tribute to sufficiently large departures from equilibrium or
enable a resonant interaction between fields and velocity-
space structure in the particle distribution. The determi-
nation of these conditions is complicated in systems with
many sources of free energy.
The large number of in situ observations of the solar

wind, a nearly collisionless, low-density, high-temperature
plasma emanating from the Sun’s surface, enables the
statistical study of plasma processes, including instabilities.
Typical instability studies focus on what unstable modes
may arise due to a single free-energy source in a reduced
parameter space. As an example, the departure of the proton
temperature ratio T⊥p=Tkp from isotropy, where ⊥ and k
are defined with respect to the mean magnetic field B, can
drive Alfvén ion cyclotron [1,2], mirror [3–5], parallel
firehose [6,7], Alfvén (or oblique) firehose [8], or Chew
Goldberger Low (CGL) (or long-wavelength) firehose [9]
instabilities. Similar instabilities arise for electron and
minor ion temperature anisotropies, and other instabilities
arise due to drifts between the distributions. A recent review
of kinetic plasma instabilities can be found in Ref. [10].

For each kind of unstable mode, one can determine using
linear theory the threshold value of a single parameter,
assuming all other plasma parameters are held constant,
beyond which the fastest growing mode has a growth rate
exceeding some specified value γmin. Varying a second
parameter enables the construction of a stability threshold
model for each kind of unstable mode for a single free-
energy source [11,12]. Such models must be modified for
any variation of other plasma parameters, including minor
ion densities or relative drifts between components, which
can suppress or enhance the modeled instability as well as
drive other unstable modes [13–15].
These simple two-parameter models were combined

with decades of observations to demonstrate that the solar
wind’s evolution is bound by long-wavelength instabilities,
specifically by the mirror and CGL firehose thresholds
[16–18]. Chen et al. [19] accounted for the free-energy
contribution from protons, electrons, and He2þ (α) to long-
wavelength instability thresholds, further demonstrating
that the solar wind is well constrained by these long-
wavelength instabilities and that each plasma species
contributes to the stability threshold. However, such
long-wavelength thresholds neglect instabilities arising at
kinetic scales and, in the case of the mirror mode threshold,
neglect the effects of relatively drifting components. Using
these methods, the majority of intervals were found to be
stable, with only a few percent classified as unstable.
Instead of focusing on a single free-energy source or

using long-wavelength thresholds which neglect kinetic-
scale instabilities, we identify the presence of any ion-driven
instabilities using a numerical implementation of Nyquist’s
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instability criterion [20,21], which determines the number of
unstable modes supported by a specified linearized equilib-
rium via a contour integral. Of a statistically random set of
Wind observations with protons and alpha particles modeled
as a collection of drifting bi-Maxwellians, 53.7%are found to
be unstable. Unstable modes preferentially arise at parallel
ion-kinetic scales and for spectra with an observed proton
beam. Instabilities appear to be pervasive in the solar wind
rather than simply serving as a boundary that constrains its
evolution, acting on only a minority of intervals.
Nyquist’s instability criterion.—Nyquist’s method deter-

mines if any complex frequency solutions ½ω; γ�ðkÞ to a
dispersion relation jDðω; γ;k;PÞj ¼ 0 have a positive
imaginary component γ > 0 and thus are unstable for a
given wave vector k and other system parameters P [20].
This is achieved by calculating the contour integral of jDj−1
over the upper half of the complex frequency plane for
fixed values of k and P and counting the number of
enclosed poles via the residue theorem, producing an
integer, the winding number Wn. If Wn ¼ 0, the system
is stable; if Wn ¼ N, the system supports N unstable
modes. This method, as well as the specific numerical
implementation employed in this work, are described in
more detail in Ref. [21]. This method does not report the
kind of mode driven unstable, only if an unstable mode
exists. This calculation can be performed not just to test for
absolute instability, integrating over the complex half-plane
with lower boundary γ ¼ 0, but for any minimum growth
rate, performing a contour integration with an arbitrary
lower boundary γ ¼ γmin, yielding the number of unstable
modes with growth rates larger than γmin, Wnðk;P; γminÞ.
To apply Nyquist’s method to solar wind observations,

we treat the solar wind as a hot, magnetized plasma
consisting of a collection of drifting bi-Maxwellian
populations. The linear response of this system is described
by the set of parameters P, which includes a normalized
density ns=nref, drift speed relative to the reference
distribution vs normalized by the Alfvén speed vA ¼
B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πnrefmref
p

, parallel and perpendicular temperatures
defined by T⊥s=Tks and Tks=Tkref , charge qs=qref , and mass
ms=mref for each component s, as well as a reference
plasma beta βkref ¼ 8πnrefTkref=B2 and thermal speed

vt ref=c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Tkref=mrefc2
q

. The linear dispersion relation

jDj for such a system is calculated as a function of wave
vector ðk⊥; kkÞρref normalized to the reference gyroradius
ρref ¼ vt ref=Ωref using the PLUME numerical solver [22].
We calculate Wnðk;P; γminÞ by the numerical integration
of jDj−1 using the proton core distribution as the reference
species and normalizing our timescales by the proton
gyrofrequency Ωp ¼ qpB=mpc. For an observed P, we
calculate Wnðk;P; γminÞ over a log-spaced grid covering
ðk⊥; kkÞρp ∈ ½10−2; 101� and define the unstable mode
density as ððγminÞ ¼ ½R dkWnðk;P; γminÞ�=

R

dk.

Data.—We choose for our analysis a random set of solar
wind observations rather than intervals associated with
signatures for the presence of instabilities [23], selecting
the first nominal peak-tracking mode spectrum of the day
measured by the Solar Wind Experiment Faraday cup [24]
on the Wind spacecraft from 309 days in 2016 and 2017;
data from the magnetometer [25,26] are used to determine
the orientation and amplitude of the magnetic field. For
each spectrum, a nonlinear-least-squares bi-Maxwellian fit
is performed for up to three ion components—a proton
core, proton beam, and α population—using intelligent
initial guesses to find the simplest physical model that fits
the data. The number of spectra with resolved proton beams
and/or an α population is listed in Table I. While the
inclusion of electron free-energy sources may decrease the
stability at fluid and kinetic scales [19,27], the details of
the electron velocity distribution function will not signifi-
cantly inhibit ion-driven instabilities. We treat the electrons
as isotropic Maxwellians with Te ¼ Tp ¼ ð2T⊥p þ TkpÞ=3
and a drift speed necessary to ensure zero net current.
For spectra without a proton beam population, values

for seven dimensionless parameters are extracted from bi-
Maxwellian fits: βkp, vtp=c, T⊥p=Tkp, T⊥α=Tkα, Tkα=Tkp,
nα=np, and vα=vA. For spectra with a proton beam, four
additional parameters are used: T⊥b=Tkb, Tkb=Tkp, nb=np,
and vb=vA. The mean values of these parameters, given in
Table II, are consistent with previous statistical studies of
solar wind observations [28], though the inclusion of
proton beams in this work reduces Tkp compared to studies
which assume a single-proton population. We calculate
Wnðkρp;P; γmin ¼ 0Þ as a function of ðk⊥; kkÞρp; example
winding number distributions and unstable mode densities
ð for three unstable spectra are shown in Fig. 1, as well as
the mean winding number W̄nðkρp; γmin ¼ 0Þ averaged
over all 309 spectra.
Occurrence of instability.—We find that 53.7% of the

randomly selected spectra have ððγmin ¼ 0Þ > 0 and thus
support at least one growing mode in ðk⊥; kkÞρp ∈
½10−2; 101�. Considering the spectra with (without) a proton

TABLE I. Total number of, and number of unstable, spectra.
The results are divided between cases with and without resolved
proton beam and/or α components. The unstable spectra are
further divided into mirror, CGL firehose, and ion-kinetic-scale
instabilities.

Number
of spectra

Number
of unstable Mirror

CGL
firehose Kinetic

Total 309 166 14 1 151
p, b, &α 189 130 12 0 118
p& α 114 33 2 1 30
p& b 5 3 0 0 3
p 1 0 0 0 0
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beam, 70.0% (28.7%) are unstable; a summary of the
number of unstable modes as a function of the resolved
components is presented in Table I. Figure 2 illustrates the
(βkp; T⊥p=Tkp) distribution of the 309 spectra; unstable
spectra are color coded by the associated unstable mode
density ð, and stable spectra are plotted in gray. The
stability thresholds for proton-temperature anisotropy-
driven instabilities with γmin ¼ 10−3Ωp [12] are included
for context.
The mean winding number W̄nðkρp; 0Þ [Fig. 1(c)] shows

that most unstable modes arise at parallel wave vectors near
ion-kinetic scales (k⊥ρp < kkρp ≲ 1), though there exist a
finite number of unstable modes at long wavelengths and/or
at more oblique wave vectors. The abrupt cutoff of W̄n
beyond kρp ≈ 1 is due to our model’s lack of electron free-
energy sources, which are necessary to drive instabilities
between ion- and electron-kinetic scales.
To determine what kinds of instabilities arise for a given

spectrum, we inspect Wnðkρp;P; 0Þ for the 166 unstable
spectra. For the mirror instability, the long-wavelength
threshold [29] cannot be simply applied, as it does not
account for the effects of relative drift between distribu-
tions. Instead, we identified 14 spectra that have unstable

modes with jkρpj extending from long wavelengths up to
the proton gyroscale covering oblique angles, k⊥ > kk.
These intervals are classified as mirror unstable; an
example of such a spectrum is found in Fig. 1(a). For
each mirror unstable case, there also exist kinetic insta-
bilities with kkρp ≲ 1, in agreement with the canonical
T⊥p=Tkp > 1mirror unstable distribution [e.g., Fig. 2(c) of
Ref. [21] ]. One spectrum, not shown, exceeds the long-
wavelength CGL firehose threshold [30] and has a winding
number distribution similar to the canonical case [e.g.,
Fig. 2(f) of Ref. [21] ], driving unstable modes for nearly
all wave vectors with kρp < 1, one (two) mode(s) for
k⊥ > ð<Þkk. We classify the remaining 151 unstable
spectra with growing modes satisfying k⊥ρp < kkρp ≲ 1

as kinetic; two example Wn distributions for these kinetic
cases are shown in Figs. 1(b) and 1(d). The instability
classification as a function of resolved ion components is
given in Table I.
Using this classification scheme, we repeat our analysis

for a range of minimum growth rates γmin ∈ ½10−4; 100�Ωp,
shown in Fig. 3. We see that [black line in Fig. 3(a)] the
fraction of unstable spectra decreases with an increase in
γmin, with no spectrum having growth rates exceeding
γ > 0.2Ωp. The number of mirror and CGL firehose
unstable modes (red and blue regions) remains constant

TABLE II. Mean plasma parameters for the 309 observed spectra (top row), for the stable and unstable spectra (second and third), and
the normalized difference of the parameters ΔX between stable and unstable spectra (fourth and fifth).

βkp 104vtp=c T⊥p=Tkp T⊥α=Tkα T⊥b=Tkb Tkα=Tkp Tkb=Tkp nα=np nb=np jvαj=vA jvbj=vA
Total 0.60 1.07 1.57 0.96 1.48 10.89 2.72 0.04 0.43 0.31 0.84
Stable 0.50 0.91 1.12 1.03 1.39 5.24 2.35 0.04 0.41 0.16 0.73
Unstable 0.68 1.21 1.96 0.90 1.52 15.74 2.88 0.05 0.44 0.44 0.89
ΔXp;α;b (%) 19.12 13.46 50.59 −21.06 8.45 64.27 20.83 2.61 2.90 61.57 21.84
ΔXp;α (%) 132.53 57.59 −26.77 14.16 � � � 26.46 � � � 18.10 � � � 77.44 � � �

(a) (b)

(c) (d)

FIG. 1. (a),(b),(d) The number of unstable modes with γmin > 0
as a function of wave vector kρp for three example spectra.
(c) The mean winding number averaged over the 309 observed
spectra.

FIG. 2. The (βkp; T⊥p=Tkp) distribution of the observed spec-
tra; color indicates the unstable mode density ð, and gray
indicates a stable spectrum.
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with increasing γmin up to 0.1Ωp. Most of the kinetic
instabilities associated with spectra without proton beams
(dark gray) are limited to growth rates less than 10−2Ωp,
while a decreasing fraction of the unstable spectra with
proton beams (light gray) persists to 0.1Ωp.
Instability timescales.—To compare γmin with timescales

other thanΩ−1
p , we calculate the fraction of unstable spectra

as a function of four additional time scales: the advected
proton gyroscale timescale ρp=vSW, the advected proton
inertial length timescale dp=vSW ¼ vA=ðΩpvSWÞ, the
Faraday cup measurement period τWind ¼ 92 s, and
τnl ¼ ðk0ρpÞ−1=3ρp=vA, an estimate for the nonlinear tur-
bulent energy transfer time at the proton gyroscale k⊥ρp¼1

assuming a critically balanced cascade of energy [31,32]
from an outer scale k0ρp ¼ 10−4. For each spectrum, the
values for these timescales are calculated, and the unstable
mode density ððγmin=ΩpÞ is interpolated onto a log-spaced
grid for ððγminτÞ. This distribution is averaged over the 309
spectra to calculate the fraction of unstable spectra as a
function of τ, shown in Fig. 3(b).
The unstable modes typically have growth rates slower

than ion-kinetic timescales. Nearly all unstable spectra have
growth rates slower than a hundredth of ρp=vSW or dp=vSW,
indicating that any growing ion-kinetic-scale structure
associated with instabilities will be static in the spacecraft
frame. As nearly all unstable spectra have growth rates
slower than 92 s, the nominal spectra selected for this work
are in steady state with respect to any instability-induced
evolution. Less than 10% of the spectra have growth rates
faster than τnl, indicating that only a small fraction of the
instabilities act quickly enough to compete with ion-scale
damping processes.
Parametric dependence.—We wish to determine any

relation between a velocity distribution’s bulk parameters
and its stability. Given the high dimensionality of the
parameter space—3þ 4ðNion − 1Þ values for Nion resolved
ion components—it is difficult to determine the relative
importance of a given parameter; previous attempts typi-
cally focused on the effects of a handful of parameters, e.g.,

βkp and T⊥;p=Tk;p. To ascertain any relation, we calculate
the normalized difference

ΔX ≡ X̄unstable − X̄stable

X̄total
ð1Þ

with X drawn from the ion bulk parameters; X̄total, X̄unstable,
and X̄stable are the mean value of X averaged over all
spectra, over the unstable spectra, and over the stable
spectra, respectively, with the stability determined using
γmin ¼ 0. The selection of larger γmin=Ωp does not quali-
tatively alter these results. We calculate ΔX using two
disjoint subsets of data: spectra with a resolved alpha
distribution and proton core or spectra with all three ion
components resolved. Values of ΔX are presented in
Table II.
Unstable spectra both without and with proton beams

have higher mean alpha drift velocities vα=vA than stable
spectra, indicating that the free energy associated with the
larger relative drift between the protons and alphas is
important in driving instabilities. The mean core proton
temperature anisotropy T⊥p=Tkp for unstable spectra
is significantly decreased (increased) from isotropy for
cases without (with) a proton beam. This reduction of
the temperature anisotropy is potentially due to the beam
having relaxed into the proton core, leading to an
increased Tkp.
For the no-proton-beam case, βkp is significantly larger

for the unstable spectra, with a 132% increase compared to
stable spectra. The normalized core proton thermal speed
vtp=c, our dimensionless proxy for the parallel core proton
temperature, is also significantly larger. Combined with the
normalized difference Δjvαj=vA, this indicates that parallel
free energy is important for driving these systems unstable.
For spectra with proton beams, Tkα=Tkp is increased for

unstable spectra. The proton beam is also slightly hotter,
while the alpha temperature anisotropy T⊥α=Tkα is slightly
decreased. The values of the other proton beam parameters
are only marginally increased for unstable spectra.
Effects of uncertainty.—To consider the robustness of

this method against measurement uncertainty, we follow
Ref. [21] and repeat our instability analysis on an ensemble
of 100 Monte Carlo variations of P for each of the 309
observed spectra. Each observed dimensional quantity from
which P is composed is replaced by a Gaussian-distributed
random variable with a mean of the original quantity and a
standard deviation of 10%. The width of the random
variable distribution is motivated by measurement uncer-
tainties found, for instance, by Kasper et al. [33]. For these
31 209 values of P, 56.0% are unstable, qualitatively
similar to 53.7% calculated from the observed spectra.
For the ensembles corresponding to stable observations,
Pðð0 ¼ 0Þ, an average of 83.6% of the elements are stable;
for Pðð0 ≠ 0Þ, an average of 90.5% are unstable. Of the
ð0 ≠ 0 ensembles, 0.6% have a majority of their elements

(a) (b)

FIG. 3. The fraction of observed spectra supporting unstable
modes with a growth rate exceeding γmin. (a) The spectra are
divided according to the instability classification presented in the
text. (b) The minimum growth rate distribution is rescaled by
selected timescales τ.
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stable, while 8.3% of the ð0 ¼ 0 ensembles are majority
unstable.
In addition to measurement uncertainty, our results may

be affected by unresolved proton beams with small nb=np
or vb=vA or by the assumption of bi-Maxwellian distribu-
tions [34,35]. Repeating this work with a dispersion
relation which neglects analytic forms and captures non-
Maxwellian features [36] will enable a more accurate
determination of solar wind stability.
Conclusions.—We assess the stability of 309 randomly

selected solar wind spectra with ion components modeled
as a collection of drifting bi-Maxwellians using Nyquist’s
instability criterion and find 53.7% are unstable. This
mode-agnostic method includes the effects of ion drifts
and temperature anisotropies, contrasting with previously
employed threshold models that identify only a small
fraction of solar wind intervals as unstable. This method
identifies the same instabilities as traditional Vlasov studies
but does not require a priori knowledge of which linear
modes are unstable, allowing for an automated analysis.
The unstable modes identified using Nyquist’s criterion are
primarily kinetic, with k⊥ρp < kkρp ≲ 1; only 4.5% of the
observed spectra have long-wavelength instabilities. The
maximum growth rate for these unstable modes is slower
than measurement and ion-kinetic timescales. The mean
alpha drift speed for unstable spectra is larger than for
stable spectra, and the ratio T⊥p=Tkp for unstable spectra is
further from isotropy. The majority of the unstable spectra
have a resolved proton beam component.
Further study is needed to assess the effects of this

profusion of instabilities. While a majority of observed
spectra are unstable, it remains unclear from this initial
study if all the inferred instabilities are dynamically
important or simply a by-product of other processes.
The resonant instabilities which comprise the majority of
the unstable spectra do not act as efficiently as long-
wavelength instabilities to return the plasma toward isot-
ropy and therefore may not constrain the dynamics of the
solar wind’s evolution. This may be an effect of slower
growth rates, smaller regions of wave vector space being
driven unstable, or departures from the assumed bi-
Maxwellian distribution affecting resonance conditions.
One way to discern if these instabilities are continuously

generated or a remnant of processes in the near-Sun
environment, and how their role in solar wind dynamics
changes at varying distances from the Sun, will be to
combine this automated instability detection method with
forthcoming measurements from Parker Solar Probe [37]
and Solar Orbiter [38].
The spectrum data used in this project were taken

from Ref. [39].
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