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Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-
Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing
solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the
interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the
Laplace growth equation, which has an infinite number of exact solutions, including the generic formation
of sharp cusps at the free surface in a finite time.
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The Kelvin-Helmholtz instability (KHI) is perhaps the
most important hydrodynamic instability which commonly
occurs either at the interface between two fluids moving
with different velocities or in the presence of the tangential
velocity jump or shear flow in the same fluid [1]. Recently,
the KHI has attracted significant experimental and theo-
retical attention in superfluids. KHI was studied either for
the interface between different phases of 3He [2–6], which
has many similarities with KHI in classical fluids, or for the
relative motion of components of 4He [7–11], which has no
classical analog; thus, we refer to it as quantum KHI. We
focus on the second case—i.e., on the quantum KHI of the
free surface of 4He in the superfluid phase (He-II state) in
the presence of the counterflow of superfluid and normal
fluid components [12,13]. The principal difference here
from the KHI of classical fluids is that relative fluid motion
in quantum KHI occurs not from different sides of the
interface but from the same side of the He-II free surface,
with fluid components coexisting in the same volume,
which is purely a quantum effect. A counterflow is
achieved in experiment by the action of a stationary heat
flow within the liquid in the direction tangent to the free
surface, as shown in Fig. 1.
Linear analysis of both classical KHI and quantum KHI

results in the exponential growth of surface perturbations
[1,12,13]. As these initial perturbations reach amplitudes
comparable with their wavelength, nonlinear effects must
be considered. Weak nonlinearity approximation takes into
account the leading-order nonlinear correction over the
small parameter, which is the typical slope of the surface.
Weakly nonlinear equations for the development of the
KHI of classical fluids result in a finite time singularity
[14], which means that solutions become strongly non-
linear beyond the perturbation theory. Two-dimensional

(2D) dynamics of the interface between two fluids in weak
nonlinearity approximation can be reduced to the motion of
complex singularities through the analytical continuation
into the complex plane from the interface [15,16]. The
approach of a singularity to the interface always means a
formation of its geometric singularity. Other examples of
the analysis of weakly nonlinear 2D dynamics through the
motion of singularities include the interface between ideal
fluid and light highly viscous fluid [17], and vortex sheets
in ideal fluid [18]. Extending weakly nonlinear solutions
into strongly nonlinear solutions is challenging and was
mostly done for the particular case of free surface hydro-
dynamics (i.e., the density of the second fluid goes to
zero) [19–24], including drops pinch-off [25,26]. Another
exception is the ideal fluid pushed through a viscous fluid
in a narrow gap between two parallel plates (Hele-Shaw
flow), which can be approximately reduced to the Laplace
growth equation (LGE), admitting an infinite set of exact
solutions [27–32].
We use a key property of quantum KHI: that both fluid

components share the same volume. It allows us to find the

FIG. 1. A schematic of counterflow in superfluid 4He. Heating
results in the flux of heat Q, which is carried by the normal fluid
component with velocity vn, while the superfluid component
moves in the opposite direction with the velocity vs. Both
components coexist in the same volume of fluid and share the
same free surface.
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exact strongly nonlinear solutions, and moreover, the
general integrability of growing solutions. This is
achieved through the exact reduction of quantum KHI
dynamics to the LGE for an arbitrary level of non-
linearity. These new solutions, in particular, describe
the formation of cusps (dimples) on the He-II free surface
in a finite time with both a surface curvature and the
velocities of components of He-II diverging at singular
points. We expect that these singularities will be possible
to observe in He-II experiments, which is different from
weaker singularities of the Moore’s type (which were
identified from approximate analysis in Refs. [15,16,18])
and predicts a smooth surface with jumps only in the
second derivative. The LGE is integrable in the sense of
the existence of an infinite number of integrals of motion
and relation to the dispersionless limit of the integrable
Toda hierarchy [33]. We suggest that the obtained
reduction of quantum KHI to the LGE is important to
the general problem of the integrability of surface
dynamics [34]. It provides a very rare example of an
integrable physical system.
The superfluid component of He-II necessary has

quantized vortices if the counterflow velocity exceeds
several millimeters per second, with their density growing
with that velocity [35]. Here we consider the dynamics
of He-II at a macroscopic scale where we can average
over vortices. We neglect average vorticity from such
averaging, as well as we ignore the vorticity of the normal
component, similarly to Refs. [12,13], which refer to that
approximation as a nondissipative two-fluid description
(dissipative effects were taken into account, e.g., in
Ref. [36]). In that approximation, the dynamics of both
fluid components is a potential one—i.e., vs ¼ ∇Φs

and vn ¼ ∇Φn—where vs, vn are the velocities of the
superfluid and normal components, with Φs and Φn

being the corresponding velocity potentials. We assume
that both components are incompressible with densities
ρs ≡ const., ρn ≡ const., and the total density ρ≡
ρs þ ρn. Incompressibility implies a Laplace equation
for each component, ∇2Φn;s ¼ 0. We focus on 2D flow
r≡ ðx; yÞ, where x and y are horizontal and vertical
coordinates, respectively. We assume that both fluids
occupy the region −∞ < y ≤ ηðx; tÞ, where y ¼ ηðx; tÞ is
the free surface elevation, with the unperturbed surface
given by ηðx; tÞ≡ 0. The flow of both components deep
inside He-II (y → −∞) as well as at jxj → ∞ is assumed
to be uniform following the x direction, which implies
Φn;s → Vn;sx, where Vn;s are the corresponding horizontal
velocities. We use the reference frame of the center of
mass such that ρnVn þ ρsVs ¼ 0 and introduce the rela-
tive velocity V ¼ Vs − Vn > 0 between fluid compo-
nents, meaning that Vn;s ¼∓ ρs;nV=ρ.
The dynamic boundary condition (BC) at the free surface

(y ¼ η) follows from the generalization of the Bernoulli

equation into two fluid components (see, e.g., Chap. 140 of
Ref. [1] and Refs. [12,13]):

ρn

�∂Φn

∂t þ ð∇ΦnÞ2
2

�
þ ρs

�∂Φs

∂t þ ð∇ΦsÞ2
2

�����
y¼η

¼ Γ − Pα − Pg; ð1Þ

where Pα ¼ −αð∂=∂xÞ½ηxð1þ η2xÞ−1=2� is the pressure
jump at the free surface due to the surface tension α (the
pressure is zero outside the fluid assuming that there is a
vacuum there), ηx ≡ ∂η=∂x, Pg ¼ ρgη is the gravity pres-
sure (the contribution of the acceleration due to gravity g),
and Γ ¼ ρnρsV2=ð2ρÞ is the Bernoulli constant which
ensures that Eq. (1) is satisfied at jxj → ∞.
The kinematic BCs at the free surface are given by

ηtð1þ η2xÞ−1=2 ¼ ∂nΦnjy¼η ¼ ∂nΦsjy¼η; ð2Þ

where ηt ≡ ∂η=∂t, and ∂n ≡ n ·∇ is the outward normal
derivative to the free surface with n¼ð−ηx;1Þð1þη2xÞ−1=2.
Equations (1) and (2) together with∇2Φn ¼ ∇2Φs ¼ 0 and
the BC at infinity form a closed set of equations of two-
fluid hydrodynamics for the KHI problem.
We introduce the average velocity v ¼ ðρnvn þ ρsvsÞ=ρ

and the auxiliary potentials Φ ¼ ðρnΦn þ ρsΦsÞ=ρ, ϕ ¼ffiffiffiffiffiffiffiffiffi
ρnρs

p ðΦn −ΦsÞ=ρ, which are linear combinations of Φn

and Φs, thus satisfying the Laplace equation together with
∇Φ ¼ v. BCs at either y → −∞ or jxj → ∞ are reduced to

Φ → 0 and ϕ → −Vx
ffiffiffiffiffiffiffiffiffi
ρnρs

p
=ρ: ð3Þ

Equation (1) turns into

∂Φ
∂t þ ð∇ΦÞ2

2
þ ð∇ϕÞ

2

2
����
y¼η

¼ c2

2
−
Pα þ Pg

ρ
; ð4Þ

where c ¼ ffiffiffiffiffiffiffiffiffiffiffi
2Γ=ρ

p
is the constant which has the dimension

of velocity. Equation (2) is reduced to

ηtð1þ η2xÞ−1=2 ¼ ∂nΦjy¼η ð5Þ

and

∂nϕjy¼η ¼ 0. ð6Þ

We replace ϕ with its harmonic conjugate ψ such that
the Cauchy-Riemann equations ϕx ¼ ψy and ϕy ¼ −ψx are
valid. The BC [Eq. (6)] for the Laplace equation

∇2ψ ¼ 0 ð7Þ

at the free surface reduces to the vanishing of tangential
derivatives ∂τψ jy¼η ¼ 0, because ∂τψ jy¼η ¼ −∂nϕjy¼η.
Without the loss of generality, we set
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ψ jy¼η ¼ 0: ð8Þ

The BCs at either y → −∞ or jxj → ∞ are reduced to

ψ → −Vy
ffiffiffiffiffiffiffiffiffi
ρnρs

p
=ρ ¼ −cy: ð9Þ

If we introduce the stream functions Ψn;s for the compo-
nents of He-II (they satisfy Cauchy-Riemann equations
∂xΦn;s ¼ ∂yΨn;s and ∂yΦn;s ¼ −∂xΨn;s), then ψ ¼
ðΨn −ΨsÞ ffiffiffiffiffiffiffiffiffi

ρnρs
p

=ρ:ψ is fully determined by ηðx; tÞ from
Eqs. (8) and (9) while being independent on Φ. The
dynamic BC [Eq. (4)] in terms of Φ and ψ is given by

∂Φ
∂t þ ð∇ΦÞ2

2
þ ð∇ψÞ2

2

����
y¼η

¼ c2

2
−
Pα þ Pg

ρ
: ð10Þ

Equations (5), (8), and (10), together with ∇2Φ ¼
∇2ψ ¼ 0 and BCs (3) and (9) at infinity, form a closed
set of equations equivalent (through harmonic conjugation)
to solving two-fluid He-II hydrodynamics for the KHI
problem. It is remarkable that this set is equivalent (up to a
trivial change of constants) to the problem of the 2D
dynamics of a charged surface of ideal fluid in the limit
where surface charges fully screen the electric field above
the fluid free surface. This limit was realized experimen-
tally for the He-II (with negligible ρn) free surface charged
by electrons [37]. In that case, Φ has the meaning of the
only (ideal) fluid component, and ψ represents (up to
multiplication to the constant) the electrostatic potential in
the ideal fluid. The term ∝ ð∇ψÞ2 in Eq. (10) corresponds
to the electrostatic pressure.
References [38,39] found exact time-dependent solu-

tions for this problem of the dynamics of the charged
surface of superfluid He-II in the limit of zero surface
tension and gravity, as well as for the limit of zero
temperature (i.e., neglecting the normal component of
He-II). We apply that approach for the full (nonlinear)
KHI problem with finite temperature. We set α ¼ g ¼ 0
on the right-hand side of Eq. (10). Below, we provide
estimates of the applicability of such neglect of surface
tension and gravity for two-component dynamics of He-II.
Our goal is to reduce Eqs. (5), (8), and (10), together with

∇2Φ ¼ ∇2ψ ¼ 0 and BCs (3) and (9), to the solution of
LGE. Differentiation of Eq. (8) over t and x results in

ηt ¼ −ψ t=ψyjy¼η; ηx ¼ −ψx=ψyjy¼η;

respectively. Using these expressions in kinematic BC (5)
rewritten in the equivalent form ηt ¼ Φy − ηxΦxjy¼η allows
us to obtain that

ψ t þ∇ψ ·∇Φjy¼η ¼ 0: ð11Þ

The sum and difference of Eqs. (10) and (11) (with
Pα ¼ Pg ¼ 0) result in

Fð�Þ
t ∓ cFð�Þ

y þ ð∇Fð�ÞÞ2jy¼η ¼ 0; ð12Þ

where we introduce the harmonics potentials

Fð�Þ ¼ ðΦ� ψ � cyÞ=2; ð13Þ

which satisfy the Laplace equations.

∇2Fð�Þ ¼0; Fð�Þ→0 for y→−∞ or jxj→∞: ð14Þ

According to Eqs. (8) and (13), the motion of the free
surface is determined by the implicit expression

cη ¼ FðþÞ − Fð−Þjy¼η: ð15Þ

Returning to physical Φn;s and Ψn;s, we find that

2ρFð�Þ ¼ ρnΦn þ ρsΦs �
ffiffiffiffiffiffiffiffiffi
ρnρs

p ðΨn −Ψs þ VyÞ: ð16Þ

Equation (14) together with Eqs. (12) and (15) are
equivalent to the KHI problem. It is crucial that the nonlinear
Eq. (12) decouple into separate equations for FðþÞ and Fð−Þ.
We note that such decoupling does not occur for the classical
KHI problem (the interface between two fluids) where the
velocity potentials and stream functions of each of two fluids
are defined in physically distinct regions (y < η and y > η),
thus making impossible a superposition of the type in
Eq. (16). (Decoupling is, however, possible by other methods
in small-angle approximations with leading quadratic non-
linearity in perturbation series for classical KHI [16].)
The full set of Eqs. (12), (14), and (15) is still generally

coupled through Eq. (15). But an additional assumption
(reduction) that either

FðþÞ ¼ 0 or Fð−Þ ¼ 0 ð17Þ

ensures the closed equations which have a wide family
of exact nontrivial solutions described below. That
assumption remains valid as time evolves. It follows from
Eq. (13) that Eq. (17) ensures the relations between Φn;s

and Ψn;s as

∓ ffiffiffiffiffiffiffiffiffi
ρnρs

p ðΨn −Ψs þ VyÞ ¼ ρnΦn þ ρsΦs:

We look at the physical meaning of our reductions (17),
based on the particular limit of small-amplitude surface
waves. We neglect the nonlinear term in Eq. (12), resulting
in the linear system which we solve in the form of plane
waves:

Fð�Þ ¼ að�Þ expðikxþ ky − iωð�ÞtÞ;
η ¼ bðþÞ expðikx − iωðþÞtÞ þ bð−Þ expðikx − iωð−ÞtÞ;

ð18Þ
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where að�Þ and bð�Þ are small constants, ωð�Þ are frequen-
cies, and k is the wave number. The first equation in
Eq. (18) ensures the exact solution of Eq. (14) with
decaying BCs at y → −∞. The substitution of Eq. (18)
into Eq. (15) and the linearization of Eq. (12) results in the
relations

ωð�Þ ¼ �ick; cbð�Þ ¼ �að�Þ; ð19Þ

which are two branches of the dispersion relation of KHI
with g ¼ α ¼ 0 [1,12,13]. Superscripts “þ” and “−”
correspond to exponentially growing and decaying pertur-
bations of the flat free surface, respectively. Equation (17)
chooses one of these two branches. Thus, Eqs. (12), (14),
and (15), together with (17) represent the fully nonlinear
stage of such separation into two branches.
The generic initial conditions include both unstable and

stable parts [Eq. (18)], with the unstable part dominating as
time evolves. Also, it was shown in Refs. [39,40] that small
perturbations of Fð−Þ on the background of large FðþÞ

decay to zero. Thus, the choice of the reduction Fð−Þ ¼ 0
(which is assumed below) in Eq. (17) is the natural one to
address the nonlinear stage of KHI. Then Eq. (13) implies
that FðþÞ ¼ Φ ¼ ψ þ cy; i.e., Φ is determined by ψ. The
boundary value problem (BVP) [Eqs. (7)–(9)] solves for ψ
at each t. The motion of the free surface is determined by
Eq. (5) as

ðηt − cÞð1þ η2xÞ−1=2 ¼ ∂nψ jy¼η: ð20Þ

To solve the BVP in Eqs. (7)–(9), we consider the
conformal map z ¼ zðw; tÞ [41] from the lower complex
half-plane −∞ < v ≤ 0, −∞ < u < þ∞ of the complex
variable w ¼ uþ iv into the area −∞ < y ≤ ηðx; tÞ occu-
pied by the fluid in the physical plane z ¼ xþ iy with the
real line v ¼ 0mapped onto the fluid free surface. Then the
free surface is given in the parametric form y ¼ Yðu; tÞ≡
Imzðu; tÞ and x ¼ Xðu; tÞ≡ Rezðu; tÞ. Solutions of both
the BVP [Eqs. (7)–(9)] and the harmonically conjugated
BVP ∇2ϕ ¼ 0 [Eqs. (3) and (6)] in ðu; vÞ variables are
given by ϕþ iψ ¼ −cðuþ iv). This means that the con-
formal variables u and v have a simple physical meaning:
u ¼ −ϕ=c and v ¼ −ψ=c, corresponding (up to multipli-
cation to the constant−1=c) to the harmonically conjugated
potentials ϕ and ψ .
We consider w as an independent variable, while zðw; tÞ

is the unknown function. Equation (20) is given by
YtXu − YuXt ¼ cXu − c, which can be rewritten as

ImðḠtGuÞ ¼ c; ð21Þ

where Gðu; tÞ ¼ zðu; tÞ − ict. Equation (21) has the
exact form of LGE, which has an infinite number of
exact solutions, often involving logarithms (see, e.g.,

Refs. [29–32]). We look at a periodic solution [31] with
the wave number k:

z ¼ w − ikA2ðtÞ=2 − iAðtÞ exp½−ikw�; ð22Þ

where AðtÞ is the amplitude of the free surface perturbation
satisfying a nonlinear ordinary differential equation
dA=dt ¼ ckAð1 − k2A2Þ−1, which develops a finite-time
singularity in dA=dt at the time t ¼ tc with AðtcÞ ¼ 1=k.
As t approaches tc, a leading-order solution is given by
A ¼ 1=k −

ffiffiffiffiffiffiffiffiffiffi
cτ=k

p þOðτÞ, where τ ¼ tc − t. Singularities
of the conformal map (22) are determined by a condition
zw ¼ 0 implying that they approach the real line v ¼ 0
from above with the increase of t. That line is reached at
τ ¼ 0 and u ¼ 2πn=k, n ¼ 0;�1;�2;…. In particular,
choosing n ¼ 0, expanding at u ¼ 0, and assuming τ → 0,
we obtain that

X ¼ u
ffiffiffiffiffiffiffi
ckτ

p
þ k2u3=6þOðuτ þ u3τ1=2Þ;

Y ¼ −3=2kþ 2
ffiffiffiffiffiffiffiffiffiffi
cτ=k

p
þ ku2=2þOðτ þ u2τ1=2Þ: ð23Þ

Figure 2 shows an example of such a solution at different t.
It follows from Eq. (23) that a cusp pointing downward
(a dimple) yþ 3=2k ∝ jxj2=3 is formed at the free surface at
t ¼ tc (i.e., τ ¼ 0), with the vertical velocity diverging as
τ−1=2 at the tip of the cusp [29,31].
Near the singularity (the tip of the cusp), one has to take

into account the surface tension and the finite viscosity
of the normal component to regularize the singularity.
Surface tension near the singularity is given by Pα ≈ α=r,
where r is the radius of curvature of the free surface. It
follows from Eq. (23) that r ≈ cτ, which implies that
Pα ≈ α=cτ. The dynamic pressure Pv, which determines
the development of KHI in LGE reduction, is given by

FIG. 2. Evolution of an initial periodic perturbation of the free
surface yðxÞ for Eq. (22) with kAð0Þ ≈ 0.15. The surface shape is
shown over one spatial period for the times ckt ¼ 0, 0.8, 1.2, 1.4
until the cusp singularity is formed. The dashed line shows the
unperturbed free surface, y≡ 0.
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Pv ¼ ρv2=2≡ ρ½ð∇ΦÞ2Þ þ ð∇ψÞ2�=2, where v is the typ-
ical velocity. Near singularity, v ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
2c=kτ

p
and

Pv ¼ ρc=kτ. Thus, both Pv and Pα ∝ τ−1. The surface
tension effect is small if the Weber number We ¼ Pv=Pα,
the ratio of dynamic and surface tension pressures, is well
above 1. Using We≈ρc2=αk¼ρnρsV2=ðραkÞ, and assum-
ing We ≳1 for the applicability of the LGE regime, we
obtain the condition for the wavelength: λ ¼ 2π=k≳
2πρα=ðρnρsV2Þ. He-II at temperature 1.5 K has ρn ¼
0.016 g=cm3, ρs ¼ 0.129g=cm3, and α ¼ 0.332 dyn=cm
[42]. E.g., if V ¼ 15 cm=s, then λ≳ 0.64 cm.
The relative strength of inertial and viscous forces near

the singularity is determined by the Reynolds number
Re≡ vr=ν, where ν is kinematic viscosity of He-II.
Using the fact that v ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
2c=kτ

p
and r ≈ cτ implies that

Re ≈ cν−1
ffiffiffiffiffiffiffiffiffiffi
2r=k

p
; i.e., Re turns small for r → 0, and

viscosity has to be taken into account. A typical scale rν
below which the flow of the normal component cannot
be considered as a potential one is estimated by setting
Re ≈ 1, which gives rν ≈ kν2=2c2. For the temperature
1.5 K, we use ν ¼ 9.27 × 10−5 cm2=s [42]. Then
rν ≈ 1.8 × 10−10 cm, i.e., rν ≪ λ; thus, the viscous effect
is much less than the surface tension. The influence of
gravity, which is determined by the Froude number
Fr ¼ Pv=Pg, is small near the singularity because the
gravity pressure Pg ≃ ρgy is finite, while Pv diverges as
τ−1, implying the divergence of Fr.
We conclude that we have reduced fully nonlinear

quantum KHI dynamics to LGE, which has an infinite
set of exact solutions with the generic formation of cusps at
the free surface in a finite time. The key is the exact
transform from a two-fluid description into the effective
single-fluid description of Eq. (10). It suggests a road map
for the efficient use of conformal mapping to include
gravity and capillarity in dynamics. Adding capillarity
would ensure singularity regularization at small spatial
scales. Conformal mapping can be used for electrohydro-
dynamic instability [37,40] and Faraday waves [43] of
He-II. Viscosity can be taken into account through a
conformal map in the Stokes flow regime of the normal
component which would go beyond a weakly nonlinear
result [17].
The free surface represents a vortex sheet which results

in the additional generation of quantized vortices at the
nonlinear stage of KHI. It is expected to push quantum
turbulence states T1 towards T2/T3 states [35].
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