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Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of
diamagnetic atoms due to parity and time-reversal violating (P; T-odd) interactions, which are essential
ingredients for probing new physics beyond the standard model of particle interactions, differ substantially
from the previous theoretical results. It is therefore necessary to perform an independent test of the validity
of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic
regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by
simultaneously incorporating the electrostatic and P; T-odd interactions in order to overcome the
shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg,
which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-
consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between
these two results on the one hand and those of previous calculations on the other are elucidated.
Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the
EDM, is evaluated and it is in very good agreement with its measured value.
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There have been remarkable advances in tabletop
experiments to explore fundamental physics in the recent
past [1]. These experiments have a symbiotic relationship
with theory. In particular, the combined results of experi-
ments and relativistic many-body calculations for atomic
electric dipole moments (EDMs) due to parity and time-
reversal violating (P; T-odd) interactions can provide
important insights into CP violation corresponding to
mass scales of tens of TeV or larger [2,3] and thereby
probe new physics beyond the standard model (BSM). Of
all the systems on which experiments have been per-
formed, mercury yields the most sensitive limit to date.
The measured value of the EDM for 199Hg, dð199HgÞ ¼
½−2.20� 2.75ðstatÞ � 1.48ðsystÞ� × 10−30 e cm with 95%
confidence level [4]. Further improvement of this limit by
2–3 orders could provide crucial information on the
validity of certain BSMs, in particular, some variants of
the multi-Higgs, supersymmetric, left-right symmetric
models [2,3,5]. It would, therefore, be very desirable to
determine precise limits for CP violating parameters from
the EDM of 199Hg. Studies on the EDMs of diamagnetic
atoms entail the synergy between the state-of-the-art
atomic experiments and three different areas of theoretical
physics—particle, nuclear, and atomic physics. In addi-
tion, the atomic theory part of this problem, which is the
focus of the present Letter, involves the interplay of

electromagnetic and combined parity and time-reversal
violating interactions, and it consequently extends the
boundaries of quantum many-body theory. Rigorous
calculations of EDMs considering the nuclear Schiff
moment (NSM) and the electron-nucleus (e-N) tensor-
pseudotensor (T-PT) interactions have been performed in
the diamagnetic systems that are under consideration in
experiments using the relativistic coupled-cluster (RCC)
theory [5–9]. By combining the results of the latest two
calculations [5,6] with that of the measured EDM value
of 199Hg, we obtained upper limits for the NSM,
jSj < 4.2 × 10−13jejfm3, and the T-PT coupling coeffi-
cient, jCT j < 7.0 × 10−10. Further combining these values
with the nuclear calculations and quantum chromodynam-
ics (QCD), gave the limits dn < 2.2 × 10−26jejcm and
dp < 2.1 × 10−25jejcm for the EDMs of the neutron
and the proton, respectively, and jθ̄j < 1.1 × 10−10 and
jd̃u − d̃dj < 5.5 × 10−27jejcm for the QCD parameter
and the combined up- and down-quark chromo-EDMs.
respectively [5,6].
Our recent RCC results for 199Hg [5,6] differ by about

20%–50% from those obtained previously by employing a
variety of relativistic many-body methods (discussions on
these results can be found in Refs. [5,7]). The results of
another RCC calculation, referred to in the literature as the
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perturbed RCC (PRCC) method, in this atom, coauthored
by one of us [10], is also not in agreement with our latest
work [6] on this subject. The differences between the two
RCCmethods are essentially technical in nature [10–12]. In
our formalism of the RCC method, the expectation value of
an operator contains only connected terms in the numerator
after the normalization cancels out in the numerator and the
denominator [13,14]. In one of the RCC calculations of the
properties of 199Hg, a large number of lower-order terms,
arising from the nonterminating connected terms of the
exponential terms containing the cluster excitation and
deexcitation operators in the expression for the EDM, have
been computed with relatively less computational effort [7].
The results of these properties were in reasonable agree-
ment with some of the results reported previously, but
further attempts to include higher-order nonlinear terms
through an iterative procedure reduced the magnitudes of
the results significantly [5,6]. In fact, the discrepancies
between these results and those of previous calculations are
about 50% in the case of 171Yb [8] and 225Ra atoms [9].
Thus, it is imperative to test the validity of these calcu-
lations by taking recourse to a reliable method that is
capable of overcoming the drawbacks of the regular RCC
method.
The coupled-cluster (CC) method has been applied to

atoms [14–17], molecules [13,14,18,19], condensed matter
systems [20,21], and nuclei [22,23]. It is currently one of
the leading quantum many-body methods and has been
referred to as the gold standard for treating electron
correlation [14,18,24,25]. It is straightforward to apply
RCC methods for the evaluation of energies, but not for
other properties. The normal coupled-cluster (NCC)
method is tailor-made for the evaluation of expectation
values of operators corresponding to different properties
[21,24–27]. In contrast to the usual RCC method, it
possesses two important attributes that make it attractive
for the calculations of different atomic properties. The first
is that it satisfies the Hellman-Feyman theorem and the
second is that expectation values of operators terminate in a
natural way [21,26,27]. Thus, the development of the NCC
method in the relativistic framework (RNCC) can lead to an
improvement in the accuracies of the calculations of atomic
properties. Unlike molecular calculations, it is possible to
exploit the spherical symmetry of the systems to develop
the RNCC method for atoms in the presence of P;T-odd
interactions. As these interactions are very weak compared
to the electrostatic interactions, the EDMs of atoms are
evaluated by expressing the wave functions as linear
combinations of wave functions of states of opposite
parities using the first-order perturbation theory. In the
RNCCmethod, this applies to both the ket and bra states. In
view of the steady advances in the EDM experiments on
diamagnetic atoms in recent years [4,28], it is essential to
develop theories like the RNCC method for improving the
accuracy of the atomic calculations to probe BSM physics.

A different approach to the evaluation of properties by the
CC method had been proposed by Monkhorst based on
linear and higher-order response theories [29]. It had been
applied to various properties, including the EDMs of
diamagnetic atoms [30]. However, this method is not as
versatile as the NCC method. Furthermore, the calculation
of atomic EDMs by this method is less straightforward than
that using the NCC method since it involves the compu-
tation of the second derivative of the energy with respect to
the P; T-odd coupling coefficients and the electric field,
which requires a knowledge of three different perturbed CC
amplitudes [30].
In this Letter, we outline the general theory of the RNCC

method for atoms in the presence of P; T-odd interaction
Hamiltonians and the electric dipole operator as external
perturbations and discuss its implementation for the deter-
mination of the EDM (da) and the electric dipole polari-
zability (αd) of atomic systems, respectively. As the first
application, we evaluate these properties for 199Hg using the
RNCC method and compare them with the results from the
RCC method, and also the latter property is compared with
its measured value.
We begin with the Dirac-Coulomb Hamiltonian, which is

given in atomic units (a.u.) by

Ha ¼
X

i

�
cαD · pi þ ðβD − 1Þc2 þ VNðriÞ þ

X

j≥i

1

rij

�
;

ð1Þ

where αD and βD are the Dirac matrices, c is the velocity of
light, and VNðriÞ is the nuclear potential experienced by an
electron in an atom. The P; T-odd T-PT interaction
Hamiltonian is given by [5]

HTPT
e-N ¼ i

ffiffiffi
2

p
GFCT

X

i

σN · γρNðriÞ; ð2Þ

where GF is the Fermi constant, CT is the T-PT e-N
coupling constant, σN ¼ hσNiI=I is the Pauli spinor for the
nucleus with spin I, γ ¼ iαDβD, and ρNðriÞ is the nuclear
density.
The P; T-odd Hamiltonian representing the interaction of

the NSM with an electron in an atom is given by [5]

HNSM
e-N ¼ 3

B4

X

i

S · riρNðriÞ; ð3Þ

where S ¼ S I
I is the NSM and B4 ¼

R
∞
0 drr4ρNðrÞ.

With the Dirac-Hartree-Fock (DHF) wave function jΦ0i
reference state, the ground state wave function jΨð0Þ

0 i is
expressed in the RCC method as [13]

jΨð0Þ
0 i ¼ eT

ð0Þ jΦ0i; ð4Þ
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where Tð0Þ is the even parity RCC excitation operator
embodying correlation effects. In the particle-hole excita-

tion formalism, we express Tð0Þ ¼ PNc
I¼1 t

ð0Þ
I Cþ

I with Nc

representing the number of electrons in the system, tð0ÞI are
the amplitudes of the excitations, and Cþ

I stands for a string
of annihilation-creation operators corresponding to a gen-
eral particle-hole excitation. The equation for the ground
state of Ha is given by

HajΨð0Þ
0 i ¼ Eð0Þ

0 jΨð0Þ
0 i; ð5Þ

with energy Eð0Þ
0 . The equations for the cluster amplitudes

Tð0Þ are obtained by using Eq. (4) and projecting Eq. (5) on
the bra state hΦ0jC−

I e
−Tð0Þ

as

hΦ0jC−
I H̄ajΦ0i ¼ 0; ð6Þ

where the deexcitation operators C−
I are the Hermitian

conjugate (H.c.) of Cþ
I . We use the notation Ō ¼

e−TOeT ¼ ðOeTÞc throughout the Letter for a general
operator O, where the subscript c stands for connected
terms [14]. For one- and two-body operators O, Ō
terminates naturally [14,18].
The inclusion of a weak P; T-odd interaction

Hamiltonian or the electric dipole operator D, denoted
by Hλ, modifies the ground state wave function as

jΨ0i ¼ eT jΦ0i ¼ eT
ð0ÞþλTð1Þ jΦ0i; ð7Þ

where the effect of the perturbation is represented by Tð1Þ ¼
PNc

I¼1 t
ð1Þ
I Cþ

I with the amplitudes tð1ÞI , which includes one
order of the weak odd-parity perturbation of interest and all
orders of the residual Coulomb interaction. Here λ repre-
sents the strength of the coupling coefficient of a given
P; T-odd interaction or the electric field for the evaluation
of da and αd, respectively. jΨ0i is clearly a mixed-parity
state and to the first order in one of the odd-parity operators,
we can express [5–7]

jΨ0i ≃ jΨð0Þ
0 i þ λjΨð1Þ

0 i: ð8Þ

This corresponds to

jΨð1Þ
0 i ¼ eT

ð0Þ
Tð1ÞjΦ0i: ð9Þ

The first-order perturbed wave function satisfies the fol-
lowing equation

ðHa − Eð0Þ
0 ÞjΨð1Þ

0 i ¼ ðEð1Þ
0 −HλÞjΨð0Þ

0 i: ð10Þ

The equation for the amplitudes for Tð1Þ can be obtained
from the above first-order perturbed equation as [5–7]

hΦ0jC−
I ðH̄aTð1Þ þ H̄λÞjΦ0i ¼ 0: ð11Þ

For the calculations of jΨð0Þ
0 i and jΨð1Þ

0 i, we consider
singles (one particle-one hole) and doubles (two particle-
two hole) excitations in the RCC theory (RCCSD method)
by restricting to I ¼ 1, 2 in the amplitude equations. The
expectation value of an operator O in the ground state of a
closed-shell system using the (R)CC method is expressed
as [13,14,25]

hOi≡ hΨ0jOjΨ0i
hΨ0jΨ0i

¼ hΦ0jeT†
OeT jΦ0ic: ð12Þ

Following the above expression and expanding jΨ0i, we
can evaluate da and αd, commonly denoted as X, of the
ground state of a closed-shell atom by [7]

X ≡ λhΨð1Þ
0 jDjΨð0Þ

0 i þ hΨð0Þ
0 jDjΨð1Þ

0 i
¼ 2λhΦ0jeTð0Þ†

DeT
ð0Þ
Tð1ÞjΦ0ic: ð13Þ

The above expression is nonterminating because of
eT

†ð0Þ
DeT

ð0Þ
. Unlike this approach, the normalization factor

appears explicitly in the PRCC method [10–12]. It is,
therefore, necessary to adopt a method that can overcome
the nonterminating terms and resolve the ambiguity of
accounting for contributions from the normalization of the
wave function. As discussed below, the RNCC method
achieves both these objectives in a natural manner.
In the RNCC method, the unperturbed ket is the same as

that in the RCC method, but the bra hΨð0Þ
0 j is replaced by

hΨ̃ð0Þ
0 j and is defined as [21,24,25,27]

hΨ̃ð0Þ
0 j ¼ hΦ0jð1þ T̃ð0ÞÞe−Tð0Þ

; ð14Þ

where T̃ð0Þ ¼ PNc
I¼1 t̃

ð0Þ
I C−

I is an deexcitation operator with

amplitudes t̃ð0ÞI , similar to T†ð0Þ ¼ PNc
I¼1 t

ð0Þ
I C−

I , such that it
satisfies

hΨ̃ð0Þ
0 jΨð0Þ

0 i ¼ hΦ0jð1þ T̃ð0ÞÞe−Tð0Þ
eT

ð0Þ jΦ0i ¼ 1: ð15Þ

It can be easily shown that hΨ̃ð0Þ
0 j has the same eigenvalue

as jΨð0Þ
0 i (or hΨð0Þ

0 j) with the condition

hΦ0jT̃ð0ÞH̄ajΦ0i ¼ 0: ð16Þ

In fact, this condition is the direct consequence of Eq. (6).

Hence, hΨ̃ð0Þ
0 j can be used in place of hΨð0Þ

0 j in the
calculation of atomic properties. Starting from the bra
equation

hΨ̃ð0Þ
0 jHa ¼ Eð0Þ

0 hΨ̃ð0Þ
0 j; ð17Þ
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the amplitudes of T̃ð0Þ can be determined using Eq. (14) and
projecting Eq. (17) on the ket state eT

ð0Þ
Cþ
I jΦ0i as

hΦ0jðT̃ð0ÞH̄a þ H̄aÞCþ
I jΦ0i ¼ 0: ð18Þ

It is interesting to note that the ket and bra equations, (6)
and (18), respectively, can be derived from a variational
principle [27]. After obtaining these solutions, the expect-
ation value of an operator O in the RNCC method can be
written as [21,24,25]

hOi≡ hΨ̃ð0Þ
0 jOjΨð0Þ

0 i
hΨ̃ð0Þ

0 jΨð0Þ
0 i

¼ hΦ0jð1þ T̃ð0ÞÞŌjΦ0ic: ð19Þ

The above expression, unlike its counterpart in the RCC
method, is a terminating series and the normalization factor
is unity. But to evaluate EDMs and electric dipole polar-
izabilities of atoms, the above (R)NCC approach needs
further modification as demonstrated in this Letter.
To obtain the first-order correction to the bra state, we

can replace hΨ0j of Eq. (12) by hΨ̃0j defining as

hΨ̃0j ¼ hΦ0jð1þ T̃Þe−T; ð20Þ

where T̃ is the new deexcitation RCC operator for the total
wave function. Expanding the bra wave function and
retaining terms to the first order yields

hΨ̃0j ≃ hΨ̃ð0Þ
0 j þ λhΨ̃ð1Þ

0 j
¼ hΦ0jð1þ T̃ð0Þ þ λT̃ð1ÞÞe−ðT0þλTð1ÞÞ: ð21Þ

It is straightforward to show that hΨ̃0j can satisfy the
biorthogonal condition with jΨ0i. Analogous to Eq. (11),
the amplitudes for T̃ð1Þ starting from the first-order per-
turbed bra can be obtained by solving

hΦ0j½T̃ð1ÞH̄a þ ð1þ T̃ð0ÞÞfH̄λ þ ðH̄aTð1ÞÞcg�Cþ
I jΦ0i ¼ 0.

ð22Þ

Again, we express T̃ð0=1Þ ¼ T̃ð0=1Þ
1 þ T̃ð0=1Þ

2 in the singles
and doubles approximation of the RNCC method
(RNCCSD method) corresponding to their respective
Tð0=1Þ operators in the RCCSD method. In this approach,
the expectation value X is evaluated by

X ≡ hΨ̃0jDjΨ0i
hΨ̃0jΨ0i

¼ hΦ0jð1þ T̃Þe−TDeT jΦ0i

¼ λhΦ0jð1þ T̃ð0ÞÞD̄Tð1Þ þ T̃ð1ÞD̄jΦ0ic:
ð23Þ

This expression terminates and can give fewer terms than
Eq. (13). Also, it does not have any H.c. terms like those in
the RCC method. Thus, a one-to-one comparison between

the contributions from various terms from Eqs. (13) and
(23) will be instructive. Substantial discrepancies between
the final results of the RNCC and the RCC methods will
reflect the incompleteness of the latter.
We give a summary of the results obtained for da

considering both the T-PT and NSM P; T-odd interaction
Hamiltonians and also the αd value of 199Hg using the DHF,
many-body perturbation theory with second- [MBPT(2)]
and third-order [MBPT(3)] approximations, random-phase
approximation (RPA), combined configuration interaction
and many-body theory (CIþMBPT), multiconfiguration
Dirac-Fock (MCDF), PRCC, and RCC approaches, which
were extensively discussed recently in Refs. [5–7], in
Table I. We also quote values explicitly from the linear
terms of the RCCSD (LRCCSD) method and a self-
consistent RCCSD approach in which the combined power
of Tð0Þ and Tð0Þ† is systematically increased in Eq. (13) until
the value of the EDM converges. The latter method is
designated as RCCSDðkÞ, where k is the total number of
Tð0Þ and Tð0Þ† operators together in the nonterminating
series. It is evident from Table I that there are discrepancies
between the results based on different methods. The results
from RCCSDð∞Þ and RNCCSD are in very good agreement
as expected, but they differ significantly from those of other
methods. This demonstrates the importance of the

TABLE I. A summary of da values from the T-PT e-N
interaction (in 10−20CThσNi jej cm) and NSM (in
10−17½S=jejfm3� jej cm) and αd (in a.u.) in the 199Hg atom from
different methods that are discussed in Refs. [5–7] and RNCCSD
method. Here RCCSDð∞Þ values are the final RCCSD results.
Corrections from the Breit interaction and triples excitations, and
uncertainties due to the use of finite basis functions, are also
mentioned separately. The final values along with net uncertain-
ties are quoted at the end.

Method T-PT NSM αd

DHF −2.39 −1.20 40.95
MBPT(2) −4.48 −2.30 34.18
MBPT(3) −3.33 −1.72 22.98
RPA −5.89 −2.94 44.98
CIþMBPT −5.1 −2.6 32.99
MCDF −4.84 −2.22
PRCC −4.3 −2.46 33.29
LRCCSD −4.52 −2.24 33.91
RCCSDð2Þ −3.82 −2.00 33.76

RCCSDð4Þ −4.14 −2.05 35.13

RCCSDð5Þ −4.02 −2.00 34.98

RCCSDð∞Þ −3.17 −1.76 34.51
RNCCSD −3.30 −1.77 34.22
Δ Breit 0.03 0.04 −0.01
Δ Triples ∼0.0 ∼0.0 −0.28
Basis �0.03 �0.02 �0.15
Final −3.30ð6Þ −1.77ð6Þ 34.2(5)
Experiment [31] 33.91(34)
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correlation effects embodied in the higher-order particle-
hole excitations that are present in the two aforementioned
(R)CC methods but not in the CIþMBPT and the MCDF
calculations. Another possible reason for the disagreement
could be that, unlike the (R)CC methods, the latter two
methods are not size extensive. The polarizability from
these methods are also compared with the experimental
result [31]. Our RNCCSD result is slightly closer to the
central experimental value than that of the RCCSD. The
EDM results for both the T-PT and NSM interactions are
slightly larger for the RNCCSD method compared to those
obtained using the RCCSD method. In Table II, we also
compare contributions to da for both the T-PT and NSM
interactions and αd from individual terms in the RCCSD
and RNCCSDmethods. It clearly shows that there are large
differences in the contributions between the H.c. terms of
the RCC method and their counterparts in the RNCC
method. However, the difference in the final results for the
two methods given in Table I are negligibly small. Thus, the
close agreement between the results for the RCCSD and
RNCCSD methods validates each of them. In Table I, we
also give contributions from the Breit interaction and
important triples excitations evaluated by a perturbative

approach. We have also obtained results for a number of
optimized basis sets to find the uncertainties in our results
due to the incompleteness of our basis functions and have
mentioned them in the table. After accounting for all these
corrections, we give the final results for all the quantities in
Table I.
The agreement between the results of the EDM calcu-

lations of 199Hg using both the RCC and RNCC methods
implies that the limits for CP violating coupling constants
obtained earlier at the nuclear and elementary particle
levels are accurate [5,6]. It is also imperative to carry
out similar analyses by applying the RNCC method to
evaluate the EDMs of 171Yb and 225Ra, where the
differences between the calculations have been found to
be even larger than that in the case of 199Hg due to the
strong electron correlation effects in these atoms. This
method is clearly capable of providing accurate theoretical
results for the EDMs and electric dipole polarizabilities of
closed-shell atoms and would be a valuable tool in the
study of fundamental physics involving EDMs and related
physical phenomena.

B. K. S. acknowledges financial support from the
Chinese Academy of Science (CAS) through the PIFI
Fellowship under the project No. 2017VMB0023.
Computations for the present work were carried out using
the Vikram-100 HPC cluster of the Physical Research
Laboratory (PRL), Ahmedabad, India.

*bijaya@prl.res.in
†bpdas.iia@gmail.com

[1] D. DeMille, J. M. Doyle, and O. P. Sushkov, Science 357,
990 (2017).

[2] S. M. Barr, Int. J. Mod. Phys. A 08, 209 (1993).
[3] M. Pospelov and A. Ritz, Ann. Phys. (Amsterdam) 318, 119

(2005).
[4] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, Phys.

Rev. Lett. 116, 161601 (2016).
[5] N. Yamanaka, B. K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi,

and B. P. Das, Eur. Phys. J. A 53, 54 (2017).
[6] B. K. Sahoo, Phys. Rev. D 95, 013002 (2017).
[7] Y. Singh and B. K. Sahoo, Phys. Rev. A 91, 030501(R)

(2015).
[8] B. K. Sahoo and Y. Singh, Phys. Rev. A 95, 062514 (2017).
[9] Y. Singh and B. K. Sahoo, Phys. Rev. A 92, 022502 (2015).

[10] K. V. P. Latha, D. Angom, B. P. Das, and D. Mukherjee,
Phys. Rev. Lett. 103, 083001 (2009); 115, 059902(E)
(2015).

[11] S. Chattopadhyay, B. K. Mani, and D. Angom, Phys. Rev. A
91, 052504 (2015).

[12] D. Angom (private communication).
[13] J. Cizek, Adv. Chem. Phys. 14, 35 (1969).
[14] I. Shavitt and R. J. Bartlett, Many-Body Methods in

Chemistry and Physics (Cambridge University Press,
Cambridge, England, 2009).

[15] N. J. DeYonker and K. A. Peterson, J. Chem. Phys. 138,
164312 (2013).

TABLE II. Comparison of contributions from various RCC and
RNCC terms to da and αd values (with same units as in Table I).
The contributions using different bra states in the two methods
exhibit very different trends, but the final results are in very good
agreement.

RCC term RCC result RNCC term RNCC result

Contributions to da from T-PT interaction

DTð1Þ
1

−2.20 DTð1Þ
1

−2.20

Tð1Þ†
1 D −2.20 T̃ð1Þ

1 D −1.74

Tð1Þ†
1 DTð0Þ

2
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1 DTð0Þ
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Tð0Þ†
2 DTð1Þ
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