
 

Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities
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We show that the soft photon, gluon, and graviton theorems can be understood as the Ward-Takahashi
identities of large gauge transformation, i.e., diffeomorphism that does not fall off at spatial infinity. We
found infinitely many new identities which constrain the higher order soft behavior of the gauge bosons and
gravitons in scattering amplitudes of gauge and gravity theories. Diagrammatic representations of these soft
theorems are presented.
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Introduction.—The last few decades have witnessed a
remarkable synergy between particle physics and cosmol-
ogy. While the objects of interest are vastly different, the
tools to study them often share a great deal of similarity. A
recent example of this synergy is the notion of “cosmo-
logical collider physics” [1]. Just as we extract particles’
interactions from scattering in colliders, we can extract the
interactions governing the early Universe from the corre-
lations of primordial fluctuations that seed cosmic structure
formation. Thus, N-point corrections (N ≥ 3) of the cur-
vature perturbation (also known as non-Gaussianities) play
a similar role as scattering amplitudes in particle physics.
Another commonality between particle physics and

cosmology is that they are both populated with a myriad
of theories, and the challenge is to zero in on the right ones.
In this regard, results based on symmetries are especially
powerful as they allow us to test and discriminate broad
classes of theories in a model-independent manner. Soft
theorems which govern the behavior of scattering ampli-
tudes or correlation functions when one or more of the
momenta approach zero are a prominent example. The
subject of soft theorems has a long history in particle
physics, dating back to the early studies of the soft pion
theorem. The equivalence between the soft photon theorem
[2,3] and large gauge transformation has already been
noted long ago by Ferrari and Picasso [4] (see, also, [5]),
where the leading and subleading soft theorems were
shown to follow from the Ward-Takahashi (WT) identity
of linear transformation which survives after Lorenz gauge
fixing.

Recently, there has been a revival of interest in soft
theorems, due largely to the series of work by Strominger et
al. [6–8] (see Ref. [9] for a review). Along these lines, new
subsubleading tree level soft theorems were found [10].
These results on higher order soft behaviors supplement
earlier findings on the leading and subleading soft photon
and graviton theorems [11–13] (analogous soft gluon
theorem up to subleading order can be found in
Refs. [14–16]). Nonetheless, methods based on asymptotic
charges (symmetry charges of large gauge transformations
that survive at null infinity) have their limitations as they do
not seem to lead to soft theorems beyond the subsublead-
ing order.
In the context of inflationary cosmology, similar soft

theorems have been obtained. The first known example is
Maldacena’s consistency condition [17] which states that
the three-point function of the curvature perturbation ζ
(also known as the adiabatic mode [18]) in the squeezed
limit where one of the modes becomes soft is determined
by the scale transformation of the two-point function

lim
q⃗→0

1

PζðqÞ
hζq⃗ζk⃗1ζk⃗2i0 ¼ −k⃗1 ·

∂
∂ k⃗1

hζk⃗1ζk⃗2i0; ð1Þ

where PζðqÞ denotes the power spectrum, and h…i0 are
correlators without the momentum-conserving δ function.
Subsequently, an infinite set of WT identities for the
adiabatic mode have been derived in Ref. [19], with the
leading q0 behavior of the soft limit recovering Eq. (1).
This infinite set of WT identities was also shown to be
equivalent to the Slavnov-Taylor identity of spatial diffeo-
morphism [20], with the adiabatic mode argued to be
related to the locality of the theory. (The method of [19] has
been applied to flat spacetime in Ref. [21], but only the
leading soft theorem was derived there.)
The parallel between inflationary correlators and scatter-

ing amplitudes raises the following puzzle: can we obtain
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all the qn soft behavior of scattering amplitudes in gauge
and gravity theories from WT identities of large gauge
transformations? In this Letter, we derive an infinite set of
soft theorems for soft photon, gluon and graviton ampli-
tudes (A similar approach to the subleading soft graviton
theorem can be found in Ref. [22] though, unlike our
present work, self-interactions of the graviton were
neglected.) utilizing the WT identity of large gauge trans-
formation or diffeomorphism. As shown in Refs. [23,24],
on-shell gauge invariance determines (i) the leading and
subleading behavior of soft photons and soft gluons, and
(ii) the leading, subleading, and subsubleading behavior of
soft gravitons. As we shall see, our results are consistent
with these previous works, but we further obtain constraints
on the higher order qn terms coming from the infinitely
manyWT identities. We focus on tree level processes in this
Letter. The generalization to loop corrected amplitudes is
left for future work.
Furthermore, we comment on the relation with the

approach using asymptotic charges. In Refs. [25,26], it
was argued that the 1=r expansion of large gauge trans-
formations and supertranslation charges correspond to the
(sub)subleading soft theorems of the photon or graviton. In
this sense, our xn expansion seems to correspond to the 1=r
expansion. However, the method in Refs. [25,26] cannot
determine the constant of integration completely, and
higher order charges do not lead to soft theorems beyond
the (sub)subleading order. As a different approach, it was
shown in Refs. [27–29] that the subleading soft photon and
subsubleading soft graviton theorems can be interpreted as
asymptotic charge conservation associated with large gauge
transformation or diffeomorphism.
It would be interesting to compare our method with the

approach based on asymptotic charges. Here, we note the
merits of our approach, in relation to previous works. First,
it is easy to extend our analysis to any order in OðqnÞ, and
indeed, we found infinitely many new constraints. Second,
it is similarly straightforward to treat massive particles as
well as massless particles with our method. Third, the
extension to the higher dimensional case is straightforward.
Fourth, the effect of the higher dimensional operator can be
easily included (see, also, Ref. [30]). We emphasize that our
method needs not assume that the charged particle is
massless or minimal coupled. Our main results, Eqs. (7),
(12), and (17), just rely on symmetries and, so, are
applicable to theories with general masses and couplings.
WT identity for large gauge transformation and

diffeomorphism.—Our starting point is the WT identity
(see Refs. [4,31] for the derivation) for the large gauge
transformation (See, also, Ref. [32] for the derivation of a
WT identity of the correlation functions for residual gauge
symmetry based on the path integral formalism.), which is
given by

lim
R→∞

h0jQR;αE1B−BE1QR;αj0i¼ lim
R→∞

h0j½QR;α;B�j0i; ð2Þ

QR;α ≔
Z

d3xfRðx⃗ÞJ0: ð3Þ
Here, fRðx⃗Þ ¼ 1, 0 for jx⃗j < R and jx⃗j > R, respectively, B
is an arbitrary operator, and E1 ¼

P
masslessjnihnj is the

projection on the zero-mass one-particle states of the
theory. On the lhs, R → ∞ corresponds to the soft limit
of the gauge particle [4], and the rhs is the expectation value
of the transformation of B, and corresponds to the ampli-
tude without the soft particle.
We can schematically express the transformation as

δΦi ¼ c0i þ c1ijΦj þ c2ijkΦjΦk þ � � �. In general, the
transformation of the gauge particle starts from the zeroth
order while that of the matter particle starts from the linear
order. Since we are interested in the scattering amplitude,
we perform the Lehmann-Symanzik-Zimmermann pro-
cedure for the n-point amplitude for both sides.
Interestingly, at least at the tree level, only the linear
transformation part survives on the rhs. (See Ref. [33] for
the proof of Adler’s zero in a similar way.) On the contrary,
only the term in J0 corresponding to the zeroth order
transformation gives the contribution to the lhs at the tree
level. This is because the term in J0 corresponding to the
nth order should contain nþ 1 number of the field and can
only be connected with the one-particle massless state at
the loop level, see Fig. 1. The detailed discussion of this
point will be given in a subsequent paper.
Soft theorems from WT identities.—Applying Eq. (2), we

obtain an infinite set of WT identities. The point is that the
we only need to consider the zeroth and linear order
transformation to derive the tree level identity. (This
situation is similar to Ref. [19].) We derive the soft photon,
gluon, and graviton theorems in theories consisting of the
gauge particle and a (complex) charged scalar. Analogous
soft theorems for theories with fermionic matter fields can
be similarly obtained by our method outlined here.
Soft photon theorem.—We take the Lorenz gauge and the

residual symmetry is ∂2χ ¼ 0, where χ is the gauge
transformation parameter, namely,

χ ¼
X∞
M¼1

ηi1i2;…;iMx
i1xi2 ;…; xiM ; ηiii3;…;in ¼ 0; ð4Þ

where η is totally symmetric and traceless. For simplicity,
we assume that χ only depends on the spatial coordinate,

FIG. 1. The Feynman diagrams which contribute to the lhs of the
WT identity. The black dot represents the insertion of the current
J0. There are infinitely many diagrams where n legs attach with J0,
and we show the first three diagrams here. Since the intermediate
state should be a Nambu-Goldstone (NG) one particle state, only
the first diagram gives contribution at tree level.
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which is sufficient to reproduce the known soft theorems
and derive new identities. (It might be possible to find new
identities if we include the time coordinate. We leave this
for future study).
First, let us apply the WT identity to the two-point

functions (See Ref. [4] for the derivation of theM ¼ 1 case.
We extend this result to general M.)

∂iχjx¼−i∂qSðpÞΓið−p − q; p; qÞSðpþ qÞ

¼
Z

d4xeipxhδϕ�ðxÞϕð0Þi: ð5Þ

More explicitly, we obtain

− lim
q→0

Mηii2;…;iM∂qi2
;…;∂qiM

SðpÞΓið−p−q;p;qÞSðpþqÞ

¼Qϕηi1;…;iM∂pi1
;…;∂piM

SðpÞ; ð6Þ

where Qϕ is the Uð1Þ charge of the matter, S is the matter
propagator, Γμðp; q; rÞ is the three-point vertex with out-
going momenta ðq; p; rÞ, and χ ¼ OðxMÞ. See Fig. 2 for the
diagrammatic representation of Eq. (6).
Next, we consider the ð2mþ nÞ-point function, B ¼

T½Aμ1ðx1Þ;…; AμnðxnÞϕðy1Þ;…;ϕðymÞϕ�ðz1Þ;…;ϕ�ðzmÞ�;
i.e., the time-ordered product of m-charged matter,
m-charged antimatter, and n-gauge bosons. The momenta
of these particles are denoted by (p1;…; pm; p0

1;…;
p0
m; k1;…; kn). The WT identities give (As a

convention, we take all external momenta to be outgoing
direction.)

lim
q→0

ηii2;…;iM∂q2 ;…;∂qMM
i
nþ2mþ1ðq;p;p0;kÞ

¼ lim
q→0

Xm
j¼1

ηii2;…;iM∂qi2
;…;∂qiM

× ½Γið−pj−q;pj;qÞSðpjþqÞMnþ2mðpjþqÞ
þMnþ2mðp0

jþqÞSð−p0
j−qÞΓið−p0

j−q;p0
j;qÞ�

þQϕ

M
ηi1;…;iM ½∂pi1

;…;∂piM
Mnþ2mþð−1ÞM−1ðp↔p0Þ�;

ð7Þ

where Mnþ2mþ1, Mnþ2m are the amplitudes with and
without the soft photon (q, i); q, i are the momentum and
the polarization, respectively. The rhs of Eq. (7) is derived
by the following steps. First, we replace δϕ and δϕ� on
the right hand side by the derivatives with respect to
the external momentum p, p0 in the Fourier space. If the
derivative acts on an external line, we can use Eq. (6) to
obtain the q derivative. If the derivative acts on an internal
line or a vertex, we can also obtain the q derivative as
(Since the momentum q is introduced as in Eq. (6), the
argument of Mnþ2m should become pj → pj þ q in
order to maintain momentum conservation (translation
invariance) of the amplitude.) ∂pj

Mnþ2mðpj þ qÞ ¼
∂qMnþ2mðpj þ qÞ. In this way, the p derivatives becomes
a q derivatives. On the other hand, the last term in
Eq. (7) corresponds to terms with derivatives of Mnþ2m.
The diagrammatic representation of the identity is
clear. The amplitude Mi

nþ2mþ1 consists of diagrams
where the soft photon is attached to an external line, an
internal line, or a vertex. Thus, in principle, we have to
consider all kinds of diagrams. However, the identity says
that if the derivative ηii2;…;iM∂q2 ;…; ∂qM is acting on
Mi

nþ2mþ1, then it can be determined by the diagram
where the soft photon is attached only to an external line
and the diagram without the soft photon, see Fig. 3. For
M ¼ 1, we can completely fix the amplitudes. The M ¼ 1
case is known in Ref. [4] and is equivalent to the
Low’s subleading theorem [2]. For higher order, we
identified a model independent part by using the projector.
These M ≥ 2 identities are new, and constrain the higher
order soft photon amplitude.
Soft gluon theorem.—Again, we take the Lorenz gauge.

Contrary to the Uð1Þ gauge theory, we cannot write down
the exact χa which preserves the Lorenz gauge in a simple
way because of the existence of hard gluons. However, in
principle, we can calculate the gauge parameter χðnÞa which
preserves the Lorenz gauge order by order of the gauge
field. The zeroth and the first order solutions are sufficient
for our purpose. To the zeroth order of the gauge field, we
have ∂2χð0Þa ¼ 0

χð0Þa ¼
X∞
n¼1

ηai1i2;…;in
xi1xi2 � � � xin ; ηaiii3;…;in

¼ 0: ð8Þ

FIG. 2. Diagrammatic representation of Eq. (6).
FIG. 3. Schematic diagrammatic representation of the soft
photon theorem, Eq. (7).
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We concentrate on t-independent χ. To the first order, we
obtain

∂2χð1ÞaþgfabcAb
μ∂μχð0Þc¼0;→χð1Þa¼−

1

∂2
gfabcAb

ν∂νχð0Þc:

ð9Þ

Applying the WT identity to the two-point functions
gives us

∂iχjx¼−i∂qD
a1a01;μ1μ

0
1ðpÞΓiμ0

1
μ0
2
;aa0

1
a0
2ðq; p;−p − qÞ

×Da2a02;μ2μ
0
2ðpþ qÞ ¼

Z
d4peipxhδAa1

μ1ðxÞAa2
μ2ð0Þi; ð10Þ

for the gluon two-point function, where D is the gluon
propagator, Γ is the gluon three-point vertex, and

∂iχjx¼−i∂qS
i1i01ðpÞΓi;ai0

1
j0
1

matt ðq; p;−p − qÞSj01j1ðpþ qÞ

¼
Z

d4peipxhδϕ�ðxÞϕð0Þi; ð11Þ

for the matter two-point function where Γmat is the matter-
gluon three-point vertex. Here, ðδAμÞa¼∂μχ

aþgfabcAb
μχ

c,
δϕ ¼ igχaTa

ϕϕ.
By using the result of the two-point function,

we can derive the identity forB ¼ TðAa1μ1
x1 ;…; Aanμn

xn ϕi1
y1 ;…;

ϕim
ymϕ

�j1
z1 ;…;ϕ�jm

zm Þ:

lim
q→0

ηaiα2;…;αM
∂qα2

;…;∂qαM
Mi;a

nþ2mþ1ðq;p;p0; kÞi1;…;j1;…;a1;…;

¼ lim
q→0

Xm orn

l¼1

ηaiα2;…;αM
∂qα2

;…;∂qαM
½Γi;aili0l

matt ðq;pl;−pl − qÞSi0li00l ðpl þ qÞMnþ2mðpl þ qÞi00l

þMnþ2mðp0
l þ qÞj00l Sj

00
l j

0
lð−p0

l − qÞΓi;ajlj0l
matt ðq;p0

l;−p0
l − qÞ þΓiμlμ0l;aala

0
lðq;kl;−kl − qÞDa0la

00
l ;μ

0
lμ

00
l ðkl þ qÞMnþ2mðkl þ qÞa00l �

þ g
M

ηi1;…;iM

�
∂pi1

;…;∂piM
ðTa

ϕÞili0lMnþ2mðpi; i0lÞ þ ð−1ÞM−1ðp↔ p0Þ þ ∂kl;i1
;…;∂kl;iM

ðTa
AdÞala0lMnþ2mðμl; kl; a0lÞ

−
Mkμl
jk⃗j2

∂kl;i2
;…;∂kl;iM

ðTa
AdÞala0lMnþ2mði1; kl; a0lÞ

�
; ð12Þ

where Mi;a
nþ2mþ1ðq;p; p0; kÞi1;…;j1;…;a1;…, is the amplitude

with the soft gluon ðq; aÞ. The momenta and color indices
of the hard charged scalars, antiscalars, and gluons are
ðpl; ilÞ, ðp0

l; jlÞ, and ðkl; alÞ, respectively. Mnþ2m is the
amplitude without the soft gluon. As in the photon case, we
have checked that the M ¼ 1 case corresponds to the
leading and subleading soft gluon theorems. The M ≥ 2
identities constrain the higher order terms. The interpreta-
tion of the identity is the same as in QED, see Fig. 4.

Soft graviton theorem.—We take the following gauge:

ds2 ¼ −dt2 þ ðeγÞijdxidxj; ð13Þ

where γij is transverse and traceless: ∂iγij ¼ γii ¼ 0. As in
QCD, the hard graviton mode prevents us from finding an
explicit solution of the gauge preserving ξi. We can write

ξð0Þi and the zeroth order transformation as

ξð0Þi ¼ηii1;…;inx
i1 ;…;xin ; δγij∼∂iξ

ð0Þ
j þ∂jξ

ð0Þ
i ; ð14Þ

where ηii1;…;in is traceless in the (nþ 1) indices and
symmetric in the latter n indices. In the language of
Ref. [19], this is the “tensor symmetry” which prevents
the adiabatic mode from receiving time dependent correc-
tions, see, also, Ref. [21]. In principle, we can write down
the linear transformation of γij, but it is complicated, and
the explicit form is not important.
As in other cases, we start from the application of the

WT identity to the two-point amplitude. It is found that
FIG. 4. Schematic diagrammatic representation of the soft
gluon theorem, Eq. (12).
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lim
q→0

ð∂iξ
ð0Þ
j þ∂jξ

ð0Þ
i Þjx¼−i∂qD

ði1j1;i01j01ÞðpÞ

×Γðij;i0
1
j0
1
;i0
2
j0
2
Þðq;p;−p−qÞDði2j2;i02j02ÞðpþqÞ

¼
Z

d4peipxhδγi1j1ðxÞγi2j2ð0Þi; ð15Þ

for the graviton and

lim
q→0

ð∂iξ
ð0Þ
j þ ∂jξ

ð0Þ
i Þjx¼−i∂qSðpÞΓijðq; p;−p − qÞSðpþ qÞ

¼
Z

d4peipxhδϕ�ðxÞϕð0Þi; ð16Þ

for the scalar. Here, δϕ ¼ −ξi∂iϕ.
Let us move on to the ðnþ 2mÞ-point amplitude. By

using the identity for the two-point function, we arrive at
the following identity:

lim
q→0

ðηijα2;…;αM þ ηjiα2;…;αMÞ∂qα2
;…; ∂qαM

Mij
nþ2mþ1

¼ lim
q→0

X
l

ðηijα2;…;αM þ ηjiα2;…;αMÞ∂qα2
;…; ∂qαM

½Γij
mattðq; pl;−pl − qÞSðpl þ qÞMnþ2mðpl þ qÞ

þMnþ2mðp0
l þ qÞSð−p0

l − qÞΓij
mattðq; p0

l;−p0
l − qÞ þ Γðij;i0lj0l;iljlÞðq; kl;−kl − qÞDði0lj0l;i00l j00l Þðkl þ qÞMnþ2mðkl þ qÞi00l j00l �

þ ðAll derivatives act onMnþ2mÞ: ð17Þ

Here, Mnþ2mðp; p0; kÞði1j1Þ;…;ðinjnÞ is the nþ 2m-point
amplitude and ði1j1Þ;…; ðinjnÞ is the polarization of each
graviton. The diagrammatic representation of the identity is
the same as before, see Fig. 5. As in the soft photon and
gluon theorems, the last term corresponds to the case where
all the derivates act on internal lines or vertices. The
detailed form may not be important, but the important
point is that this term can be expressed in terms of the
amplitude without the soft graviton.
We have checked that theM ¼ 1 identity corresponds to

the leading and subleading graviton theorems, and the
M ¼ 2 identity is the subsubleading soft graviton theorem.
The M ≥ 3 identities constrain the higher order soft
graviton amplitude.
Discussion.—In closing, we outline several interesting

future directions motivated by the present work. As shown
in the recent body of works (e.g., Refs. [6–8,34–39], and
reviewed in Ref. [9]), there is an intriguing relation between
the asymptotic symmetry at null infinity and the memory
effect. A natural question is whether there is a similar

relation between the large gauge transformation or diffeo-
morphism at spatial infinity and the memory effect.
In addition to soft theorems for photons, gluons, and

gravitons, it would also be interesting to apply our method
to studying the soft behavior of the Nambu-Goldstone
mode. (for recent work on the single soft scalar or pion
theorem, see Refs. [37,40–42]).
Our result may also have implications for elucidating the

symmetry constraints of quantum gravity. In addition to the
first few leading soft theorems that were previously known
in the literature, the identities for the higher order soft
behavior that we found should further constrain the tree-
level scattering amplitudes in any quantum theory of
gravity. It would be interesting to pursue this possibility
in conjunction with the study of soft theorems in string
theory [43]. Another interesting direction is the generali-
zation to the higher spin case [22].
In this Letter, we focus on tree level processes. It is

known that soft theorems get corrections from the infrared
singularity at the loop level except for the leading soft
theorem [44,45]. Extending our method to the loop level
may shed some interesting light on these corrections, see
Ref. [46] for a related discussion.

We used TikZ-Feynman [47] to draw the Feynman
diagram. This work is supported in part by the Grant-in-
Aid for Japan Society for the JSPS Fellows No. 16J06151
(Y. H.), the DOE Grant No. DE-SC0017647 (G. S.) and the
Kellett Award of the University of Wisconsin (G. S.).
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