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Similarly to the system Hamiltonian, a subsystem’s reduced density matrix is composed of blocks
characterized by symmetry quantum numbers (charge sectors). We present a geometric approach for
extracting the contribution of individual charge sectors to the subsystem’s entanglement measures within
the replica trick method, via threading appropriate conjugate Aharonov-Bohm fluxes through a multisheet
Riemann surface. Specializing to the case of 1þ 1D conformal field theory, we obtain general exact results
for the entanglement entropies and spectrum, and apply them to a variety of systems, ranging from free and
interacting fermions to spin and parafermion chains, and verify them numerically. We find that the total

entanglement entropy, which scales as lnL, is composed of
ffiffiffiffiffiffiffiffi
lnL

p
contributions of individual subsystem

charge sectors for interacting fermion chains, or even OðL0Þ contributions when total spin conservation is
also accounted for. We also explain how measurements of the contribution to the entanglement from
separate charge sectors can be performed experimentally with existing techniques.
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Introduction.—One cannot overestimate the importance
of entanglement as a fundamental aspect of quantum
mechanics [1–3]. Its central measure, the entanglement
entropy (EE), has proven indispensable for characterizing
quantum correlations and phase transitions in many-body
quantum systems in condensed matter and high energy
physics [4–6].Moreover, the performance of tensor-network
algorithms for many-body systems strongly depends on the
scaling properties of the EE with the subsystem size [7–9].
The computation of the EE often involves the replica

trick, where one introduces n copies of the system. The nth
Rényi entropy (RE) is defined as sn ¼ TrρnA, where ρA ¼
TrBρ is the reduced density matrix of subsystem A; the EE
is then S ¼ −TrρA ln ρA ¼ −limn→1∂nsn. Recently, this
theoretical tool became an experimental method which
allowed, for the first time, to extract the RE in a bosonic
cold atomic system, by preparing a twin of the many-body
quantum ground state and using an appropriate swap
operation [10].
Following the general path-integral approach [5], intro-

ducing time as a dimension, the computation of sn acquires
a geometrical meaning: in the same way that the partition
function of a 1D quantum system corresponds to a path
integral over a cylinder with circumference given by the
inverse temperature T, at T ¼ 0 the calculation of sn
corresponds to computing the partition function on a
Riemann surface geometry Rn. For a 1D quantum system
with A a segment of length L, the Riemann geometry with
n ¼ 3 is depicted in Fig. 1(a).
A curious question that motivated this work is, What is

the physical meaning of inserting a space-time Aharonov-
Bohm flux α into this space, coupled, e.g., to the particles
charge? When a charged particle moves from one copy to

the next until it finally returns back to the initial copy, it
acquires a phase α. Thus, the total acquired phase is given
by αNA, where NA is the total charge (number of charged
particles) in region A [see Fig. 1(b)]. Hence, the compu-
tation of the path integral in the presence of this flux gives
the quantity

snðαÞ ¼ TrðρnAeiαN̂AÞ: ð1Þ

A related quantity (with different normalization) has
recently been computed for several specific models with
holographic duals [11–13] or nontrivial topology [14], but
its physical meaning has remained obscure. Here we not
only provide such a meaning but also give general results
and particular examples for 1D critical systems described

(a) (b)

FIG. 1. (a) An example of a 3-sheet Riemann surface geometry
with an inserted space-time Aharonov-Bohm flux α. (b) A
generic many body wave function is a superposition of subsystem
charge states.
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by conformal field theory (CFT) [15], and provide recipes
for its experimental measurement using the setup of [10].
Main idea.—The theme of this work can be presented via

an elementary example of a single particle located in either
one of two sites, described by the wave function
jΨi ¼ c1j10i þ c0j01i. The reduced density matrix for
the first site is ρA ¼ jc1j2j1ih1j þ jc0j2j0ih0j, so the RE
is sn ¼ TrρnA ¼ jc1j2n þ jc0j2n. Is it possible to separately
extract each of these two terms, which are evidently
associated with the region A charge sectors NA ¼ 1 and
0, respectively [16]? Clearly this cannot be achieved by
simply performing a charge measurement in region A,
which would quench the entanglement.
More generally, let us assume that the density matrix of

the total system ρ commutes with a conserved quantity N̂
(e.g., the total system is in a pure eigenstate of N̂), which is
a sum of contributions of the two subsystems, N̂¼ N̂AþN̂B
(the non-Abelian case will be discussed later on). Tracing
the equation ½N̂; ρ� ¼ 0 over the degrees of freedom of
subsystem B, we find that ½N̂A; ρA� ¼ 0, i.e., that ρA is block
diagonal, with different blocks corresponding to different
eigenspaces of N̂A (charge sectors). Thus, the entropies
are sums of contributions of the different sectors,
sn ¼

P
NA
snðNAÞ. The individual contributions snðNAÞ

were calculated numerically for a particular model [18],
but how could one resolve them analytically in general?
Here comes the connection with the replica trick: the
symmetry resolved entropies snðNAÞ are simply the
Fourier transform of the partition function on the n-sheet
Riemann surface with a generalized Aharonov-Bohm flux:

snðNAÞ ¼
Z

π

−π

dα
2π

snðαÞe−iαNA ¼ TrðρnAPNA
Þ; ð2Þ

where PNA
, the projector into the subspace of states of

region A with charge NA, is the Fourier transform of eiαN̂A .
General CFT result.—Having defined the geometry Rn

of an n-sheet Riemann surface pierced by an Aharonov-
Bohm flux α, we now consider critical 1D systems and
obtain a general exact result for the nth RE, which we will
employ in various physical examples below.
The n-sheet Riemann geometry pierced by a flux may be

viewed as an extension of the theory into n copies
ϕ → ϕlðl ¼ 1;…; nÞ, where the fields ϕl satisfy the
boundary condition ϕlðx; τ ¼ 0−Þ ¼ ϕlþ1ðx; τ ¼ 0þÞeiαδl;j
(x ∈ A), and ϕlðx; τ ¼ 0−Þ ¼ ϕlðx; τ ¼ 0þÞ (x ∈ B). Here,
we have chosen to insert the Aharonov-Bohm phase in the
link between copies j and jþ 1. We have also made the
assumption of a Uð1Þ symmetry, which will be generalized
below. As suggested in [19,20], in the absence of flux, one
can define a local twist field T living at the end points of
region A, denoted w and w0 (w − w0 ¼ L), which generates
the twisted boundary conditions with α ¼ 0. We incorpo-
rate the additional Aharonov-Bohm phase into the boun-
dary condition by “fusing” this twist field T with the

operator V generating a phase α for particles moving
around it in sheet j, resulting in the composite twist field
T V ¼ VT . One may view T VðwÞ as an additional field in
the n-copy theory Cn, such that any correlation function on
the n-sheet Riemann surfaceRn with Aharonov-Bohm flux
α is given by

hOðzÞiRn;α ¼
hOðzÞT VðwÞT Vðw0ÞiCn
hT VðwÞT Vðw0ÞiCn

: ð3Þ

In order to fully characterize the properties of our composite
twist field T V , we follow Ref. [5] and uniformize the
n-sheet Riemann surface into a single plane with a leftover
flux via a conformal transformation. Relegating the deri-
vation to the Supplemental Material [21], we find that the
composite twist field has scaling dimension

ΔnðαÞ ¼
cðn − n−1Þ

24
þ ΔV

n
: ð4Þ

Here c is the central charge of the CFT, and ΔV is the
scaling dimension of the operator V generating the gener-
alized Aharonov-Bohm phase. This twist field correlator
then yields our general result for the RE [5],

snðαÞ ∼ L−c
6
ðn−n−1ÞL−2ΔVþΔ̄V

n ; ð5Þ

where Δ̄V is the scaling dimension of the antiholomorphic
part of V.
U(1) charge.—In this section we exemplify our general

result Eq. (5) for a generic spinless fermionic chain
described by a c ¼ 1 CFT which is equivalent to 1D
massless bosons [24]. Using the bosonization relation
ψ ∼ eiϕ, one can implement the phase eiα accumulated
upon taking a fermion aroundw orw0 in copy j, by inserting
the vertex operator V ¼ eiðα=2πÞϕj. For a system of inter-
acting fermions generically described by a Luttinger liquid
with parameter K, the scaling dimension becomes
ΔV ¼ Δ̄V ¼ 1

2
ðα=2πÞ2K, such that [25]

snðαÞ ¼ snðα ¼ 0ÞL−2K
n ð α2πÞ2 : ð6Þ

Assuming lnðLÞ ≫ 1 (with appropriate dimensionless L,
e.g., lattice site number), the integral in Eq. (2) gives for the
symmetry resolved RE

snðNAÞ ≅ snðα ¼ 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πn

2K lnL

r
e−

nπ2ΔN2
A

2K lnL ; ð7Þ

with ΔNA ¼ NA − hNAi. For n ¼ 1, s1ðαÞ is the generating
function of the charge distribution, and s1ðNAÞ ¼ PðNAÞ is
the probability of having NA particles in region A, which
has been calculated before [28]. Equation (7) with n ¼ 1
implies that the variance in the number of particles in a
segment of length L is hΔN2

Ai ¼ K lnL=π2 [29].
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The charge-resolved EE can now be calculated from
SðNAÞ ¼ −∂nsnðNAÞjn→1, giving

SðNAÞ ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffi
π lnL
2K

r
e−

π2ΔN2
A

2K lnL −O
�

1ffiffiffiffiffiffiffiffi
lnL

p
�
: ð8Þ

We can see that the decomposition of the total entangle-
ment SðLÞ ¼ ðc=3Þ lnL into charge contributions is con-
trolled by PðNAÞ, the Gaussian distribution of charge in
region A. The maximal contribution SðhNAiÞ scales asffiffiffiffiffiffiffiffi
lnL

p
, which is plausible given the

ffiffiffiffiffiffiffiffi
lnL

p
scaling of the

standard deviations of charge fluctuations. Equation (8)
was recently conjectured based on numerical data [18].
We checked our CFT predictions via numerical simu-

lations for noninteracting (K ¼ 1) fermions on a lattice. In
general one may define the entanglement Hamiltonian HA

by ρA ¼ e−HA. For a noninteracting system HA is quadratic
in the fermionic operators. Denoting its single-particle
eigenvalues by εl, the expressions for the entropies are
similar to the thermal entropies of free fermions with unit
temperature and Hamiltonian HA,

snðαÞ ¼
Y
l

½eiαðflÞn þ ð1 − flÞn� ð9Þ

where fl ¼ 1=ðeεl þ 1Þ can be easily obtained numerically
as the eigenvalues of the equal-time two-point fermionic
correlations matrix, Cij ¼ hc†i cji (i; j ¼ 1 � � �L) [31].
Choosing a subsystem of L ¼ 10 000 sites of an
infinite half-filled tight-binding chain (for which Cij ¼
sin½πði − jÞ=2�=½πði − jÞ�) we computed the distribution of
occupancies PðNAÞ ¼ s1ðNAÞ, and the particle-number
resolved entanglement SðNAÞ. Figure 2 shows the numeri-
cal results as dots and our analytical formula with K ¼ 1

without any fitting parameter (but including O½ðlnLÞ0�
corrections [28,32]) as continuous lines. As also seen in
Fig. 2, even for a large subsystem of L ¼ 10 000, lnL is
moderately large and the distribution is quite narrow. Thus,
in practice it is inaccurate to keep only the leading
contribution in

ffiffiffiffiffiffiffiffi
lnL

p
in Eq. (8) and instead one has to

evaluate Eq. (2) with Eq. (6).
The analytic dependence of Eq. (6) on n can be used

to extract further information including the full entangle-
ment spectrum of each charge block of the density
matrix, fλiðNAÞg (so that snðNAÞ ¼

P
i½λiðNAÞ�n). Let

us first consider the maximal eigenvalue, λmaxðNAÞ ¼
limn→∞½snðNAÞ�1=n. Using Eq. (6) we find

− ln λmaxðNAÞ ¼
1

6
lnLþ π2

2K lnL
ΔN2

A: ð10Þ

While the first term was derived by Calabrese and Lefevre
[33] we here obtain the dependence on the particle number
NA [34]. Let us recall that − ln λi are the many-
body eigenvalues of the entanglement Hamiltonian HA.
For noninteracting fermions, the low-lying single-
particle eigenstates ofHA have been calculated analytically
[37], εl ¼ �ðπ2=2 lnLÞð2l − 1Þ, l ¼ 1; 2; 3;…. Filling
up the negative energy states (ΔNA ¼ 0) and then
adding ΔNA particles gives ðπ2=2 lnLÞPΔNA

l¼1 ð2l − 1Þ ¼
ðπ2=2 lnLÞΔN2

A, in exact agreement with our general result
Eq. (10). Our field-theory approach generalizes these
results to the interacting case,K ≠ 1, confirming a previous
conjecture based on numerics [18].
Turning to the full entanglement spectrum, let us denote

its density for a given charge sector by Pðλ; NAÞ. Defining
the integrated density, nðλ; NAÞ ¼

R λmaxðNAÞ
λ dλ0Pðλ0; NAÞ,

and using the methods of Calabrese and Lefevre [33], we
find (see the Supplemental Material for details [21])

nðλ; NAÞ ¼
Z

π

0

dα
π
cosðαNAÞI0

 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðαÞ ln 1

λmax
ln
λmax

λ

s !
;

ð11Þ

where λmax ≡ λmaxðΔNA ¼ 0Þ, rðαÞ ¼ 1–3Kα2=π2, and
I0ðzÞ is a modified Bessel function [38]. The same quantity
can be calculated numerically for the noninteracting
(K ¼ 1) tight-binding chain, and the results nicely agree
with the CFT prediction, as can be seen in Fig. 3.
SU(2) symmetry.—The possibility to decompose entan-

glement measures into charge sectors via the insertion of an
Aharonov-Bohm flux in the Riemann geometry applies to
general symmetries. Now we will demonstrate this for a
non-Abelian symmetry, and consider SUð2Þ spin chains as
a case study. Our basic goal is now to break the entropy of
an SUð2Þ symmetric system into contributions with a fixed
total spin S⃗2A as well as total projection SzA in region A.

FIG. 2. Charge distribution PðNAÞ and charge-sector contribu-
tions to entanglement entropy SðNAÞ in a subsystem of
L ¼ 10 000 sites of an infinite half-filled tight-binding chain,
computed numerically (dots) and analytically (continuous lines).
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In order to compute TrSAρ
n
A for a fixed spin SA of region A,

S⃗2A ¼ SAðSA þ 1Þ, one can use an identity valid for any
spin-rotation-symmetric operator such as ρnA [39],

TrSA;SzAρ
n
A ¼ TrSzA¼SAρ

n
A − TrSzA¼SAþ1ρ

n
A: ð12Þ

The right-hand side involves the quantity snðSzAÞ≡ TrSzAρ
n
A,

which is a sum over states with fixed SzA in region A. The
latter can be computed along the same methods developed
for the Uð1Þ case above.
We will now calculate snðSzAÞ for critical spin chains. A

family of critical SUð2Þ symmetric theories are the SUð2Þk
Wess-Zumino-Witten (WZW) models [40]. For k ¼ 1 they
describe the familiar spin-1=2 Heisenberg chain, while for
other integer k they correspond to certain critical spin-k=2
chains [40]. Let us first recall that in the Uð1Þ case, the
operator eiαN̂A appearing in Eq. (1) can be written as

eiðα=2πÞ
R
A
dx∂xϕ, which indeed becomes a product of the

vertex operators mentioned above, VðwÞV†ðw0Þ ¼
eiðα=2πÞϕðwÞe−iðα=2πÞϕðw0Þ (here we write only holomorphic
factors). Similarly, in a spin chain we have the operator

eiαŜ
z
A ¼ eiα

R
A
dxJz , with J⃗ðzÞ the WZW spin current.

The corresponding vertex operators have the scaling
dimensions

ΔðkÞ
V ¼ Δ̄ðkÞ

V ¼ k
4

�
α

2π

�
2

; k ∈ N: ð13Þ

As a check, for k ¼ 1 we have the Heisenberg chain,
which is equivalent (via the Jordan-Wigner transformation)
to interacting spinless fermions with K ¼ 1=2 [24], in

agreement with our previous Uð1Þ results. Using Eqs. (2)
and (12) we obtain (for lnL ≫ 1)

SðSA; SzAÞ ¼ ð2SA þ 1Þ cπ5=2

3k3=2
ffiffiffiffiffiffiffiffi
lnL

p e−
π2S2

A
k lnL; ð14Þ

where c ¼ 3k=ðkþ 2Þ is the central charge of the WZW
model. This equation displays a further reduction of the
scaling of the entropy; since the typical value of SA scales
as

ffiffiffiffiffiffiffiffi
lnL

p
, SðSA; SzAÞ scales as OðL0Þ.

Discrete symmetries.—To demonstrate the method
for discrete symmetries, consider a ZN charge Q mod N
with Q ¼ QA þQB. The system under consideration
can be the clock model, or a chain of parafermions
[41,42]. For a ZN symmetric state we can decompose
the entropies according to the subsystem charge,
snðQAÞ ¼ ð1=NÞPN−1

α¼0 e
−ið2πα=NÞQAsnðαÞ, where snðαÞ ¼

TrρAeið2πα=NÞQA ðα; QA ¼ 0; 1;…; N − 1Þ. Does snðQAÞ
actually depend on QA and how?
As a transparent example, consider N ¼ 2, and specifi-

cally the quantum Ising chain H ¼ −J
P

iσ
z
iσ

z
iþ1 − h

P
iσ

x
i ,

which is equivalent to a chain of Majorana fermions via the
Jordan-Wigner transformation [43]. Here the components
of the total spin (fermion number) are not conserved, but
the parity ð−1ÞQ ¼Qiσ

x
i of the number of spins in the

þx direction (fermion number parity) is, so entanglement
can be decomposed into the two sectors of even or odd QA.
Using the duality transformation to disorder fields which
are new Pauli operators μzi ¼

Q
j≤iσ

x
i , μ

x
i ¼ σziσ

z
iþ1 (in terms

of which the Hamiltonian attains the same form but with
J ↔ h), we express the desired counting operator as
ð−1ÞQA ¼Qj∈Aσ

x
j ¼ μz1μ

z
L, where region A extends from

site 1 to L. Moving to the critical state at J ¼ h, described
by a c ¼ 1=2 Ising CFT, the disorder operator μ has scaling
dimension Δμ ¼ Δ̄μ ¼ 1

16
. Plugging this into the above

results (with V ¼ μ) we get

snðQAÞ ¼ L−ðn−1=nÞ=12 1
2
(1þ L−1=ð4nÞð−1ÞQA); ð15Þ

a result we have verified numerically. Setting n ¼ 1 one
obtains PðQAÞ, the probability of finding a given parity in
region A. As expected, the dependence onQA disappears at
L → ∞. One can readily generalize the calculation to
ZN models such as the clock model or parafermions,
using the parafermion CFT [41] where the central
charge is c ¼ 2ðN − 1Þ=ðN þ 2Þ and the scaling dimension
of the generalized disorder operators is Δμα ¼ Δ̄μα ¼
αðN − αÞ=2NðN þ 2Þ (α ¼ 0;…; N − 1).
Experimental measurement.—While so far we treated

the replica construction as a purely theoretical trick, in a
remarkable recent experiment [10] it has been applied in the
lab, demonstrating for the first time the possibility to
perform a measurement of entanglement in a many-body

FIG. 3. Integrated density of the entanglement spectrum
nðλ; NAÞ for the same system in Fig. 2 computed numerically
(discontinuous lines) and analytically (continuous lines) for
various particle numbers NA. Numerically we used the 24
closest-to-zero single particle eigenvalues of the entanglement
Hamiltonian to build the highest many-body eigenvalues of ρA.
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system, specifically the second RE. Following a theoretical
prediction [44], their protocol for measuring s2 consists of
(i) preparing two copies using optical lattice techniques,
(ii) performing a transformation between the copies using a
Hong-Ou-Mandel interference, and (iii) a parity measure-
ment of the charge in region A in a specific copy. One can
then easily modify the last stage by measuring the charge of
region A in both copies and calculating the average NA
(since only integer values of this average contribute
[26,44]). The average parity of one copy for given NA
would yield s2ðNAÞ. One may also multiply the parity by
eiαNA and average over all NA to experimentally obtain the
“flux RE” s2ðαÞ. The extension to n > 2 is similar. Let us
note that a recent work brought up another route for the
experimental measurement of the RE without using repli-
cas, which actually gives access to the charge-resolved
entropies as well [45].
Future outlook.—Many interesting questions arise from

our results, including the scaling of the charge-resolved
entanglement in higher dimensions or in the presence of
boundary critical phenomena [27,46,47], its behavior in
topological systems, and other entanglement measures such
as the negativity [26,48] and the relative entropy [49].
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