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Topological qubits based on SUðNÞ-symmetric valence-bond solid models are constructed. A logical
topological qubit is the ground subspace with twofold degeneracy, which is due to the spontaneous
breaking of a global parity symmetry. A logical Z rotation by an angle 2π=N, for any integer N > 2, is
provided by a global twist operation, which is of a topological nature and protected by the energy gap. A
general concatenation scheme with standard quantum error-correction codes is also proposed, which can
lead to better codes. Generic error-correction properties of symmetry-protected topological order are also
demonstrated.
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In recent years there has been significant interplay
between quantum computing and topological states of
quantum matter [1]. Topological qubits have been pro-
posed in various systems [2–9], and excitations, e.g.,
anyons, support topologically protected gates by braiding
[10]. The valence-bond solids [11,12], which are proto-
type models for matrix (and tensor) product states [13]
and allow symmetry-protected topological (SPT) order
[14–17], have also been exploited as resources for
quantum computing [18–21].
Fault-tolerant quantum computing and error-correction

codes benefit from, and also mostly rely on, the stabilizer
formalism and Pauli Hamiltonians [22]. However, there are
limitations [23–30]: e.g., the set of transversal qubit Z
rotations is restricted to be of angles 2π=2n, n ∈ N [27–29].
At the same time, more general coding theory has been
developed and nonstabilizer codes have been found
[31–33]. In this work, we go beyond the stabilizer frame-
work and construct topological qubits and gates from
a class of SUðNÞ valence-bond solids [34–38] with 1D
SPT order. We find, for any integer N > 2, there exists a
valence-bond solid qubit (VBSQ) such that the logical gate
set fX̄; eið2π=NÞZ̄g is transversal. Larger sets of transversal
gates can help reduce the circuit cost [27–29,39], making
fault-tolerant quantum computing more efficient.
In this Letter, a VBSQ is based on the degeneracy due to

the spontaneous breaking of a global parity symmetry,
while the logical space is also protected by a global SUðNÞ
symmetry. We find both the broken and unbroken sym-
metries provide transversal logical gates, namely, the
logical X̄ (bit flip) is the generator of the global parity
symmetry, while the logical eið2π=NÞZ̄ is provided by a
global twist operation (Fig. 1). An appealing feature we
show is that the twist is topologically robust and extracts
the SPT order of ground states [14–17,21]. The gate

eið2π=NÞZ̄ is implemented in a transversal and topologically
stable fashion, and it is furthermore outside the stabilizer
formalism. The existence of such gate implementations is a
main finding of our work.
As a consequence of their SPT order and distinct from

topological stabilizer codes [2,23,40], VBSQs have a code
distance that grows linearly with the length of the code for
bit flips (and a little more), but is constant for generic phase
flips, which is due to the exponentially decaying correlation
functions. Furthermore, VBSQs, viewed as a class of SPT
codes, and standard codes can be concatenated, improving
error resilience. That is, VBSQs provide error protection
at the hardware level, afforded by an energy gap, and
error syndrome in addition. By concatenation, bit flips
are corrected at the hardware level, while phase flips are

FIG. 1. Schematic diagram of a twist on a SUðNÞ valence-bond
solid qubit, which executes the logical operation eið2π=NÞZ̄. In
general, a twist can be implemented by a product of rotations
around a fixed direction on every site, with the rotation angles θn
increasing smoothly from 0 to 2πΩ along the system, for
n ¼ 1; 2;…; L, L the size of the system, and winding number
Ω. The angle Φ of the logical rotation is proportional to the
winding number, Φ ¼ 2πΩ=N.
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corrected at the software level. The situation encountered
thus resembles classical hard drives, which have a layer of
physical error correction provided by the bulk magnetiza-
tion of spins, and a layer of software error correction on top.
We demonstrate our findings with the following main

parts. The code space is first defined, and then transversal
logical gates are studied. Detailed analysis of the code
properties then follows, and, finally, a concatenation
framework is laid out including a scheme of entangling
gates. The model we study is the translation-invariant
SUðNÞ valence-bond solid

HN ≔
XL

n¼1

ðJ1hn þ J2h2n þ J01nÞ ≔
XL

n¼1

Hn ð1Þ

on a ring of L sites with periodic boundary conditions (see
Fig. 1) and

hn ≔
XN2−1

α¼1

Tα
n ⊗ Tα

nþ1; ð2Þ

with fTαg the generators of SUðNÞ in the adjoint irrep
for each site n [34–38]. For each N > 2, and at J1 ¼
ð3N=2ÞJ2 ¼ ð3=NÞJ0 (without loss of generality let
J1 ¼ 1), the system has two degenerate ground states,
which span the code space of a VBSQ. The two ground
states, denoted as jLi and jRi, are the spatial reflection of
each other, namely, they break a parity symmetry, denoted
as Zp

2 , but preserve SUðNÞ symmetry. In the valence-bond
picture (see Fig. 2), the parity refers to the interchange of a
fundamental irrep and its conjugate. In terms of matrix
product state we have

jLi ¼ ϑ
XN2−1

i1¼1

� � �
XN2−1

iL¼1

trðAi1Ai2 � � �AiLÞji1;…; iLi; ð3Þ

and fAing is independent of the site label n, which is then
dropped, and for each site Ai ¼ ffiffiffiffiffiffiffiffiffi

2=N
p

ti, ti ¼ λi=2 for the
generalized Gell-Mann matrices fλig, while for jRi the
operators on each site are Ai ¼ ffiffiffiffiffiffiffiffiffi

2=N
p ðtiÞ�. The normali-

zation constant is ϑ ≔ ðN2=N2 − 1ÞL=2 such that the
ground states are normalized and orthogonal

hLjLi ¼ hRjRi ¼ 1; hLjRi ¼
�

1

N − 1

�
L
→ 0: ð4Þ

The model is frustration free; hence its gap at zero
temperature is robust against local perturbation [41].
Some of its approximate excitations can also be obtained
(see Fig. 2 and the Supplemental Material [42], Sec. I).
Now we define the VBSQs for each N > 2. In the large-

L limit, the operator PC ≔ jLihLj þ jRihRj is the projec-
tion on the code space C since the correction 1=ðN − 1ÞL
is exponentially suppressed. Logical X̄ operation is the
generator of the parity symmetry Zp

2. In a certain on-site
basis (see Supplemental Material [42], Sec. I. B), it can be
expressed as a permutation operator Π on each local site

X̄jLi ≔ Π ⊗ Π � � �ΠjLi ¼ jRi; ð5Þ

and

Π ¼ diagðσx; σx;…; σx; 1Þ; ð6Þ

for qubit Pauli operator σx ¼ ð0
1
1
0
Þ. Notably, X̄ is stable

against the single adjointor excitation since there is no way
for it to make a logical X̄ without introducing a second one.
The situation is different if there are domains. The size of a
domain is not confined as there is no binding potential
between the two domain walls, with one soliton (two empty
dots) and one antisoliton (two filled dots) (see Fig. 2),
although the size of domain walls is instead confined.
This means domain wall excitations can lead to logical bit
flip error; however, the probability to induce X̄ will be
exponentially suppressed as the system size increases. The
system size should not be too big in order to achieve a
proper coding redundancy, while also not too small to
satisfy (4).
The SUðNÞ symmetry provides the logical Z̄ rotations by

a twist operator

UTW ≔ ⊗
n
eið2π=LÞnOn ≔ ⊗

n
Un; ð7Þ

and Hermitian operator On on each site n is in Cartan
subalgebra; i.e., it is diagonal, and ei2πOn ¼ 1 (Supplemental
Material [42], Sec. II). In the valence-bond picture, the twist
is equivalent to a unitary operator

V ¼ diagðeil; 1;…; 1Þ; l ≔
2π

L
; ð8Þ

FIG. 2. Ground states and approximate excitations in the
valence-bond picture. The on-site adjoint irrep is constructed
from the projection from the product of a fundamental irrep (filled
dot) and its conjugate (empty dot). Solid lines represent singlet
(bond). (Upper left) A ground state that breaks Zp

2 , and the other
one is obtained by flipping each bond. (Upper right) A single
adjointor excitation, whose size is confined by a linear potential,
which is due to the dimerized region in between that has higher
energy. (Lower left) A dimerized state, which preserves parity
(reflection about a link) but breaks translation symmetry. (Lower
right) A domain excitation with a pair of domain walls due to the
periodic boundary condition, which roughly has the same energy
as two adjointors.
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acting on each bond, while eil can be at any of the N
different positions (flavors) on the diagonal of V. For any
flavor we find

hLjUTWjLi ¼ ei2π=N; hRjUTWjRi ¼ e−i2π=N; ð9Þ

and hLjUTWjRi ¼ 0. This provides the logical operator
eið2π=NÞZ̄. Actually, we see that the phases e�i2π=N are the
SPT index of the two ground states [17,21,55].
The twist is a weak perturbation on the system.

The action of the twist is uniform on each bond, while
it is not the same on each physical site. The disturbance
of the twist to the local interaction terms hn is of
Oð1=L2Þ and negligible since ½hn;Onþ1 þOn� ¼ 0, and
hψ j½hn;Onþ1 −On�jψi ∈ Oð1=LÞ, ∀jψi ∈ C. This means
that the twist operator approximates the symmetry of the
system up to the Oð1=LÞ correction, which vanishes in the
large-L limit.
Furthermore, the twist operation is topological. First, the

phase gate V [Eq. (8)] can be slightly disturbed such that
the parameter lb for each bond b is different and, as long asP

blb ¼ 2π and the second order l2
b is small, the twist

angle remains the same. Second, the twist is also homotopic
since the same twist angle can be achieved on any long-
enough continuous segment. Third, if the set of lb sums to
2πf for a fractional number f ∈ ð0; 1Þ, the system will be
excited and there will be an energy penalty. This means the
twist is protected by the gap. If f is slightly perturbed from
1 by δf, the twist angle remains the same with corrections
of the order ðδfÞ2. Last but not least, the twist is also stable
against the single adjointor excitation. When there are
domains, however, the phase accumulated from one ground
state may cancel that from the other, destroying the
twist phase.
Next we consider error-correction properties of VBSQ.

A correctable set of errors fEig are defined such that the
error-correction condition

PCE
†
i EjPC ¼ CijPC ð10Þ

is satisfied, and fCij ∈ Cg form a Hermitian matrix [56].
Usually, a code can detect more errors that it can correct.
Different from error correction, a detectable set of errors
fEig are defined such that

PCEiPC ¼ eiPC ð11Þ

for ei ∈ C. We study errors that are from independent local
unitary errors. In the following we mainly study three sets
of errors: errors from the set (12) below, SUðNÞ, and
SUðN2 − 1Þ, respectively. We find that the code distance is
linear in L for the set (12), while shows nontrivial error
correction and detection features for the other general
errors.

First, we expect the VBSQ is robust against logical bit
flip errors Π. This is indeed the case (Supplemental
Material [42], Sec. III). Consider the noncommutative
error set

E ≔ fΠ;Pjkg ð12Þ

with Pjk as the adjoint rep of the generalized Pauli
operators Pjk ¼ XjZk (Supplemental Material [42],
Sec. III). Denote EðnÞ as a product of n errors acting on
n random positions of the system with each from the set
(12), and define the effective operator as

UðnÞ ≔
� hLjEðnÞjLi hLjEðnÞjRi
hRjEðnÞjLi hRjEðnÞjRi

�
: ð13Þ

We find UðnÞ ¼ ð−1=N2 − 1Þn1 holds until a certain large
enough n. In particular, Uð1Þ ¼ −ð1=N2 − 1Þ1, Uð2Þ ¼
ð1=N2 − 1Þ21, which shows that any single error from the
set (12) is correctable. To determine its distance from the
ideal identity gate, we expand UðnÞ in terms of qubit Pauli
matrices as UðnÞ ¼ 1

2
ðs01þ s⃗ · σ⃗Þ. The numerical simu-

lation in Fig. 3 for the SUð3Þ case shows the value log10 δ
for δ ≔ js⃗j=js0j for different system sizes. We also find a
similar behavior for the trace distance between UðnÞ and
identity. We see that by an increase of 20 for the system
size, the critical number of errors increases by 10. This
shows that the critical number of errors is L=2, which
means the code distance for the error set (12) is L,
saturating the classical Singleton bound [22].
General errors lead to more complicated behavior.

For two local unitary errors V, U ∈ SUðNÞ with a spatial
distance r, V and U as their adjoint rep, we find

FIG. 3. Simulation of the deviation log10 δ of UðnÞ from
identity as the number of errors n from the discrete error set E
(12) increases for different system sizes: (from left to right) from
L ¼ 60 to 200 by an increase of amount 20. For a fixed n, we
chose 20 random errors at n random positions.
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hLjVUjLi ¼ αþ β; hRjVUjRi ¼ αþ β�; ð14Þ

and zero off-diagonal terms. Here the parameters
α ≔ ½ðN2ju0j2 − 1ÞðN2jv0j2 − 1Þ�=½ðN2 − 1Þ2�, β ≔
ð−1=N2 − 1Þrþ2β0 for β0 ∈ C, and V ¼ v01þP

iviPi,
U ¼ u01þP

iuiPi, expanded in the Pauli basis fPig of
the virtual space. Note β0 ¼ 0 if V ¼ U. We see that the
imaginary part β decays exponentially with respect to their
spatial distance r. The result above is consistent with the
exponentially decaying correlation functions of the system,
and it means that arbitrary unitary errors in the symmetry
can cause a leakage together with a phase flip error, and
they are not exactly correctable. However, the code will
perform better for some cases, e.g., when the errors are
dilute which could be met by lowering the temperature.
This is confirmed by our simulations (Supplemental
Material [42], Sec. III. B). Finally, we expect on-site
random unitary errors from SUðN2 − 1Þ are not correctable
since they destroy the SPT order of the system. Indeed this
is the case, and fortunately, we find they are detectable
(Supplemental Material [42], Sec. III. B).
Error syndrome can be determined by the energy of

local terms Hn. For instance, after a Pauli error P on site n,
the energy of local terms Hn and Hn−1 each increases to
N3ðN2 þ 1Þ=3ðN2 − 1Þ2 (Supplemental Material [42],
Sec. III. C). Recall that it is zero on ground states. The
total energy penalty is about twice the energy of single
adjointor excitation. This means a Pauli error requires
higher energy to occur than an adjointor, and Pauli errors
can be suppressed by avoiding two or more adjointor
excitations. A general unitary error on site n can also be
detected from the syndrome of Hn−1 and Hn. Furthermore,
if only one term shows the syndrome, this implies there is
effectively only one adjointor, given a perfect energy check.
This causes no problem for an error correction since a
single adjointor cannot cause logical errors. By cooling the
system to a low temperature, excitations will be suppressed
and the Hamiltonian itself provides protection of the code.
As a final part of this work, we find the code perfor-

mance of VBSQs can be improved by the concatenation
with an outer code, e.g., a certain stabilizer code. A
necessary ingredient of concatenation is state preparation
and coupling of many VBSQs. We find there exists a
measurement-based scheme [25] when N ¼ 4k, with pos-
itive integers k ∈ N, for which the logical Z̄ gate can be
realized by the twist (Supplemental Material [42], Sec. II).
Measurements of a logical Z̄ or X̄ will prepare their
eigenstates jL=Ri or jU=Di ¼ 1=

ffiffiffi
2

p ðjLi � jRiÞ, respec-
tively. Using the five-qubit code [22], which has the parity
property that the Hamming weight of its logical j0i (j1i)
is even (odd), a VBSQ at state jLi can be prepared at
state 1=

ffiffiffi
2

p ðjLi þ ð−1ÞxjRiÞ by the transversal coupling
between the five-qubit code and each particle in VBSQ
sequentially, and measuring the logical X of the five-qubit
code (see Fig. 4) at the end, for x as the parity extracted

from the measurement outcomes. This also works for other
stabilizer codes that have the even-odd parity property, such
as the Steane code and the Shor code. Error correction on
the ancillary stabilizer code can be performed during the
process to enhance fault tolerance. Logical operators X̄ X̄,
Z̄ Z̄, etc., for two VBSQs can be measured in a similar
fashion, which can then realize logical entangling gates
such as the CNOT and controlled-phase gates.
Given the robustness against the X̄ error, the repetition

code is the most efficient choice to deal with a Z̄ error on a
VBSQ. For a series of VBSQ rings in parallel, enforcing the
stabilizers X̄iX̄iþ1 for all nearest-neighbor pairs of rings
prepares the repetition code with codeword

j0=1Li ≔
1ffiffiffi
2

p ðjUUU � � �i � jDDD � � �iÞ; ð15Þ

and the logical operatorXL ≔ X̄ for X̄ on any ring and logical
ZL ≔ Z̄ Z̄ Z̄ � � �. Notably, our code can correct more Z̄ errors.
When the parity check on the software level indicates a Z̄
error, it can then be located with the help of error detection of
individual rings. As a result, the minimal number of rings is
two instead of three for the repetition code, and, in general, it
can correct up to κ − 1, instead of 1

2
ðκ − 1Þ, phase flip errors

for κ rings. More generally, concatenation with stabilizer
codes can be employed to safely avoid X̄ error on a single
VBSQ ring. The error detection of a single ring will also
improve the code performance. For transversal gates, VBSQs
for N ¼ 2kþ1 concatenated with stabilizer codes allow trans-
versal implementation of Z rotation of an angle π=2k.
For instance, there is a transversal phase gate for N ¼ 8
and a T gate for N ¼ 16, which are constrained by the
structure of the Clifford hierarchy (also see Supplemental
Material [42], Sec. IV).
In summary, we have proposed a construction of

valence-bond solid qubits and concatenation schemes
with stabilizer codes. We notice a distinction for even
and odd N, while a scheme for odd N cases remains to be
discovered. Our work demonstrates fundamental features
of valence-bond solids and symmetry-protected topological
order for quantum error correction and quantum memory,
and can also be generalized to other valence-bond solids or
crystals for various symmetries or spatial dimensions.

FIG. 4. The measurement of X̄ (left) and X̄ X̄ (right). Here each
controlled symbol is for the operator Π, and each controlled Π
represents the transversal controlled Π between a particle in
VBSQ and the five-qubit code (at its logical state jþi). The
particles in VBSQ are acted upon sequentially.
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