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In this Letter, we presented a general calculation of the superexchange interactions in dimer Mott insulators and
compared these results to the title materials. We contrasted the “monomer model,” with one orbital per molecule, to the so-
called dimer approximation where the bonding and antibonding combinations of the two orbitals within each dimer are first
constructed and the orbitals that are filled in the noninteracting limit are neglected. We showed that intradimer interference
effects can lead to qualitative differences between the full monomer model and the dimer approximation. Most dramatically,
intradimer interference can cause a quasi-one-dimensional Heisenberg model to arise as an effective low-energy model of a
quasi-two-dimensional tight-binding model. We argued that this physics is relevant to the κ-ðBEDT-TTFÞ2X.
However, we have subsequently discovered an important error in our application of the general theory to the BEDT-TTF

salts. We wrote the tight-binding part of the Hamiltonian in the form −
P

ijσtijĉ
†
iσ ĉjσ, where ĉ

ð†Þ
iσ annihilates an electron with

spin σ in the ith Wannier orbital. We continue to use this convention throughout this Erratum. However, Koretsune and
Hotta [1] write such terms in the form þP

ijσtijĉ
†
iσ ĉjσ . We failed to account for this sign difference when using their first

principles parameters for the κ-ðBEDT-TTFÞ2X salts. This has important consequences for these materials. As discussed
below, the general mechanism described in this Letter whereby a one-dimensional superexchange interaction results
from a two-dimensional tight-binding model remains correct. However, it does not appear to be relevant to the
κ-ðBEDT-TTFÞ2X salts.
The value of J1 is independent of the signs of the hopping integrals, but J2 is not (compare Fig. 2 of this Erratum to Fig. 2

of the original Letter). As emphasized in this Letter, interference effects can dominate the value of J2, particularly when
electron-electron interactions are large. In this Letter, we analyzed the superexchange interactions analytically, in two limits.
We begin this Erratum by clarifying how the superexchange interactions are changed when the signs of the hopping
integrals are reversed (the numbering below corresponds to that on pages 2 and 3 of the original Letter).

FIG. 2. Superexchange from perturbation theory for the monomer (solid lines) and dimer (dashed lines) models. Tight-binding
parameters as calculated from first principles for κ-Cl and Vm ¼ 0. With our sign convention, the hopping integrals are
tb1 ¼ −207 meV, tb2 ¼ −67 meV, tp ¼ 102 meV, and tq ¼ 43 meV.
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(i) In the molecular limit, ðUm − VmÞ=jtb1j → ∞, the analytic forms we reported in the Letter are correct regardless of the
signs of the hopping integrals. In this limit, the only nonvanishing superexchange interaction is J2 ¼ −tptq=2tb1. Changing
the signs of all three hopping integrals takes J2 → −J2. This is consistent with the differences between Nagaoka
ferromagnetism and Haerter-Shastry antiferromagnetism [2–4]. However, the signs of the hopping integrals that Koretsune
and Hotta found via density functional theory (DFT) imply that in the molecular limit the κ-phase salts are described by a
antiferromagnetic Heisenberg model on a square lattice as J1 ¼ 0 and J2 > 0. Thus, in this frequently studied limit, our
conclusion that there are important differences between the superexchange interactions calculated from the monomer and
dimer models remains valid (the latter yields a Heisenberg model on the anisotropic triangular lattice in this limit [5]).
(ii) For Um ¼ Vm, changing the sign of tb1 swaps the bonding and antibonding orbitals relative to the definitions in the

original Letter. That is, with tb1 < 0, the bonding orbital is created by b̂†iσ ¼ ð1= ffiffiffi
2

p Þðĉ†i1σ − ĉ†i2σÞ and the antibonding orbital
is created by â†iσ ¼ ð1= ffiffiffi

2
p Þðĉ†i1σ þ ĉ†i2σÞ. These signs propagate through and change our analytical results. The general

superexchange interaction in this limit for tb1 < 0 is Jgen ¼ 2ðt11 þ t12 þ t21 þ t22Þ2=Um, which is importantly different
from the expression for tb1 > 0 given in the original Letter. The expression for J1 is unchanged, but for tb1 < 0, we have
J2 ¼ 2ðtp þ tqÞ2=Um, which again differs by a sign from the expression for tb1 > 0, given in the original Letter. An
important consequence of these corrections is that the ratio J2=J1 from the dimer approximation is correct whenUm ¼ Vm:
observe that the monomer and dimer lines in Fig. 4 coincide at Vm=Um ¼ 1 for both materials.
Our error also necessitates the correction of two figures from this Letter. We replot Figs. 2 and 4 with the signs of all the

hopping integrals reversed (so as to correctly represent the results of DFT calculations [1]). It can be seen from Fig. 2 that
both J1 and J2 remain antiferromagnetic (> 0) for all values of Um. This is in contrast to the case reported in the original
Letter, with the signs of all hopping integrals reversed, where J2 becomes ferromagnetic (< 0) for sufficiently large Um.
This behavior is expected for largeUm as, to leading order in 1=Um, we have J2 ¼ −tptq=tb1; changing the signs of all three
hopping integrals must change the sign of J2 in this limit. Figure 4 shows that the superexchange interactions in both CuCN
and κ-Cl remain quasi-two-dimensional. Indeed, as one expects Um > Vm, these results suggest that the dimer
approximation underestimates J2=J1 and hence that the magnetic interactions are closer to the square lattice than one
would expect from the dimer approximation. This emphasizes that accurate estimates of the interaction parameters are
important for determining the ratio J2=J1 and hence for understanding the spin-liquid state in CuCN.
Finally, to understand the role of the signs of hopping integrals in molecular Mott insulators more generally, the following

observations may be helpful. Considering the pattern of hopping integrals (Fig. 1) given that the sign of tij is reversed by a
π gauge transformation on exactly one of the sites (i or j), changing only the sign of tb1 is sufficient to change the results
between those described in the Erratum and those given in the original Letter. Secondly, as changing the signs of all hopping
integrals is equivalent to a particle-hole transformation, if there is one electron per dimer (rather than three) the formulas
given in the original Letter hold. This is the relevant filling for organic anion systems such as the NiðdmitÞ2 salts [6], which
do appear to show quasi-one-dimensional magnetism.

FIG. 4. Comparison of dimer (dashed lines) and monomer (solid lines) models for CuCN and κ-Cl (hopping integrals from [10]
and Um ¼ 12tb1). Tight-binding parameters from [1], with our sign convention, these are tb1 ¼ −207 meV, tb2 ¼ −67 meV,
tp ¼ 102 meV, and tq ¼ 43 meV for κ-Cl and tb1 ¼ −199 meV, tb2 ¼ −91 meV, tp ¼ 85 meV, and tq ¼ 17 meV for CuCN.
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Thus, we conclude the following: (i) The interference mechanism for realizing a quasi-one-dimensional (q1d) Heisenberg
model from a quasi-two-dimensional (q2d) tight-binding model is not relevant to the κ-phase organics, but is possible and
may be realized in other materials; (ii) interdimer interference effects are still likely to be relevant to the κ-phase organics,
but they tend to drive the system towards the square lattice limit (J1=J2 → 0); (iii) the dimer approximation is only accurate
when the Hartree-Fock approximation is reasonable.
We thank Stephen Winter and Roser Valentí for helpful discussions.
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