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Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral
rules. Although fish are known to sense and exploit flow features, these models usually neglect
hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic
interactions. We show that (1) a new “collective turning” phase emerges, (2) on average, individuals swim
faster thanks to the fluid, and (3) the flow enhances behavioral noise. The results of this model suggest that
hydrodynamic effects should be considered to fully understand the collective dynamics of fish.
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Collective animal motion is ubiquitous: insects swarm,
birds flock, hoofed vertebrates herd, and even humans
exhibit coordination in crowds [1-5]. Among these fasci-
nating collective behaviors, schooling refers to the coor-
dinated motion of fish. It is exhibited by half of the known
fish species during some phase of their life cycle [6] and
can generate different disordered phases, such as swarming
(important cohesion, but low polarization of fish heading),
or ordered phases: milling (torus or vortex pattern), bait ball
(dense “ball” of fish), or highly polarized schools [7].

Interestingly, these collective phases can be achieved
without any leader in the group. This has first been
observed in experiments [8] and later confirmed by the
development of self-propelled particle (SPP) models [9,10].
In the context of fish schooling, these mathematical models
have generally been constructed by assuming simple
phenomenological behavioral rules, such as the popular
“three-A rules” of avoidance, alignment, and attraction
[11-13]. From a physical point of view, these SPP models
have an obvious interest because of their simplicity and
universality [14] and because they allow the derivation of
continuum equations [15]. Similar approaches have been
used in soft active matter (e.g., bacteria swarms and
microtubule bundles) to derive continuous models taking
into account hydrodynamic interactions at vanishing
Reynolds number [16,17]. However, they have rarely been
connected quantitatively to experimental observations [18].
It is only recently that it has been possible to infer and
model the actual behavioral rules from the individual
tracking of fish in a tank [19-21].

Schooling likely serves multiple purposes [22], including
better foraging for patchy resources and increased protection
against predators. Fish are also thought to benefit from the
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hydrodynamic interactions with their neighbors [23-26], but
it is unclear whether this requires particular configurations or
regulations. When swimming in a structured flow, fish can
exploit near-field vortices generated by other fish to reduce
the energetic costs of locomotion [27-29]. Fish use their
lateral line, a hair-based sensor running along their side [30],
to sense the surrounding flow, which has also proved crucial
for collective behavior [31,32]. Yet, the existing behavioral
models of fish schooling do not include hydrodynamics.
Here, we propose to combine a data-driven attraction-
alignment model [19-21], with far-field hydrodynamic
interactions. In the context of this new model, several
questions arise: Can the swimmers exploit the flow to swim
faster on average? Do the hydrodynamic interactions give
rise to novel collective phases? Does the flow play the role
of a self-induced noise, as it is the case at low Reynolds
number [33]?

Fish are modeled as self-propelled particles moving in an
unbounded two-dimensional plane. They move at constant
speed v relative to the flow and exhibit no inertia [34].
Following behavioral rules inferred from shallow-water
tracking experiments [19,20], we consider that each indi-
vidual is attracted to its Voronoi neighbors with intensity &,
(units m~'s7!), tends to align with the same neighbors
with intensity k, (units m™"), and is subject to a rotational
noise with standard deviation o (units rad s~/2). Moreover,
each swimmer responds to the far-field flow disturbance
created by all other swimmers. This flow is an elementary
dipole, with dipole intensity Sv in two dimensions, where
S = nr} is the swimmer surface and ry is its typical length
[25,35-37]. Note that, except for hydrodynamic inter-
actions involving the swimmer size r,, swimmers are
considered as pointlike particles.
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We use v and k, to make the problem dimensionless,

yielding the length scale \/v/k, and timescale 1/,/vk,.
To this end, I} = k,/v/k,, I, = o(vk,)™*, and I, =
Sk,/v characterize the alignment, noise, and dipole
intensities, respectively. The dimensionless equations of
motion are

F=e +U, (1)

0; =(p;;sin(0;;) + I sin(¢;;)) + L, + Q. (2)

Equation (1) expresses that each individual, located at r;, is

moving with a constant unit speed along its orientation el-l

[Fig. 1(a)]. An additional drift term U, arises when hydro-
dynamic interactions are taken into account. A far-field
approximation is used to model the flow [37,38]. Here, we
choose to neglect the vorticity shed in the swimmer wakes
[39,40] to keep the model simple and tractable. Under this
potential flow approximation, each swimmer generates a
dipolar flow field, and we can use the principle of super-
position to calculate the flow U; experienced by a swimmer
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where uj; is the velocity induced by swimmer j at the
position r; and (ef, e?) are the polar coordinates in the
framework of swimmer j [Fig. 1(a)]. The angular velocity
in Eq. (2) is the sum of an attraction term, an alignment
term, a standard Wiener process 7(t), describing the
spontaneous motion of the fish and modeling its “free
will,” and a rotational term €; induced by hydrodynamic
interactions. The behavioral terms (attraction and align-
ment) are averaged over the Voronoi neighbors, noted V;,
with the weight (1 4- cos 6;;) modeling continuously a rear
blind angle [20] [Fig. 1(b)]

(o) = o(l +cos0;;)/D (1 +cost;).  (4)
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FIG. 1. (a) Sketch of two interacting swimmers, showing
the heading el.l of swimmer i, its viewing angle 0;;, the relative
alignment angle ¢;;, the interswimmer distance p;;, and the polar
coordinates in the reference frame of swimmer j (e? R e?). (b) Gray
scale representation of the anisotropic visual perception, modeled

by the term (1 + cos 6;;) in Egs. (2)-(4).

The rotation induced by hydrodynamic interactions is not
due to vorticity, since it is zero for a potential flow, but to
gradients of normal velocities along the swimming direc-
tion. In other words, the angular velocity due to the flow is

Q= Zell -Vu; - e} (5)
i

Another interpretation of this angular velocity is to
consider that each swimmer is a dumbbell oriented in the
swimming direction, with each weight advected by the flow
(Supplemental Material Fig. 2 [41]). The intensity of the
hydrodynamic interactions (related to both the drift term U;
and the induced rotation €;) is proportional to the dipole
intensity /. For the 10-cm-long fish (ry = 5 c¢m) considered
in Ref. [19], the cruise speed is v~ 0.2 ms~!, and
k, =041 m~'s™!, yielding a dipole intensity /, ~ 0.016.
In the present model, the flow induces translational and
rotational motions, whose origins are physical, but, in
principle, it could also elicit a behavioral response (e.g.,
a tendency for fish to go along or against the flow) [21].

We consider a group of N = 100 individuals, with
random initial orientations and initially distributed in a
20 x 20 box (in dimensionless length units), although the
subsequent dynamics is not affected by the initial con-
ditions. The dynamical system described by Eqgs. (1)—(5) is
solved numerically, using an explicit scheme with time step
5t = 1072, Depending on the values of the three dimen-
sionless parameters (/ 1> Ins and /), four different dynami-
cal phases emerge (Fig. 2). When noise is comparable to
or larger than the alignment, we observe a disordered
“swarming” phase [Fig. 2(a)]: swimmers form a sparse
group with no preferential orientation. When alignment
intensity is stronger, the group is denser and individuals
tend to swim in the same direction: this is known as the
“schooling” phase [Fig. 2(b)]. When alignment and attrac-
tion are comparable and noise is low or moderate, the group
reaches a “milling” phase [Fig. 2(c)]: it forms a “vortex.”
These three phases (swarming, schooling, and milling) can
also be observed without any hydrodynamic interactions
[20] [U; =0 and ©; = 0 in Egs. (1) and (2)]. However,
when the flow is explicitly taken into account, a novel
phase appears that we call the “turning” phase [Figs. 2(d)
and 2(e)]. In this new phase, swimmers tend to align along a
preferential orientation and, at the same time, the group
follows a large-scale quasicircular trajectory.

In order to precisely characterize these different phases,
the global order parameters P and M are introduced [42],
along with the average speed V

P=lell,

e’ Xr; —
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where e/ = (r; —7;)/|r; — ;] is the unit vector along the
segment joining the center of mass of the group and the ith
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FIG. 2. (a)—(d) Plots of the swimmer positions and associated

streamlines for different values of the parameters. On all figures,
the dipole intensity is /; = 10~ 2, the scale bar corresponds to 107,
and the color scale represents the instantaneous velocity. For
clarity, swimmers are represented as “airfoils” of length 7r,. Four
distinct dynamical phases are observed: (a) swarming for /,, = 0.8,
I =0.5; (b) schooling for 7, =0.5, I =9; (c) milling for
I, =03, I = 1.5; and (d) turning for /, = 0.2, I = 4. (e) Paths
followed by each swimmer during 12 dimensionless time units, the
final time corresponding to (d). For long-time dynamics, see
Supplemental Material Fig. 1 and Movies 14 [41].

swimmer, and the over bar denotes the average over all
individuals. The parameter P is the polarization and M is
the milling and corresponds to the normalized angular
momentum of the group (straight-line schooling gives a
value of zero, while perfect milling gives a value of one).

To assess the importance of hydrodynamic interactions,
we performed a systematic parametric study for three cases
(Fig. 3): a pure behavioral model with no effects of the fluid
[U; = 0and Q; = 0in Eqgs. (1) and (2)], a simple model of
hydrodynamic drift without induced rotation (U; # 0 and
Q; = 0), and a full hydrodynamic model with both induced
translation and rotation (U; # 0 and Q; # 0). For each set

of parameters, P, M, and V are obtained after time
averaging over At = 100 (after waiting 100 time units to
ensure that the transient dynamics of a few dimensionless
time units is over) and ensemble averaging over 100
realizations.

In the absence of hydrodynamic interactions, the results
of Ref. [20] are recovered [Fig. 3(a)]. For P > 0.5, which
roughly corresponds to /) X 2, we observe the schooling
phase. For M > 0.4, obtained for /) <2 and I, < 0.5, the
group exhibits a milling phase. For all other cases tested,
the swarming phase is observed. We chose the threshold
values P = 0.5 and M = 0.4 to distinguish the four phases,
but P and M vary continuously in the parameter space.
An alternative choice of thresholds would be possible and
would yield qualitatively similar results.

When hydrodynamic drift is introduced with 7, = 1072,
but induced rotation is neglected [Fig. 3(b)], the phase
diagram is practically unchanged. The only difference is that
the mean velocity V is now slightly greater than one (V = 1
when hydrodynamic interactions are neglected). When the
full hydrodynamic model is considered [Fig. 3(c)], the new
turning phase appears for M > 0.4 and P > 0.5 (corre-
sponding to /,, $0.25 and 3 </ < 5) and V is increased.
Looking at the swimming speeds of each individual in the
group [Fig. 2(e)], we see that some individuals swim slower
because of the fluid, and some others swim much faster with
swimming speed reaching |r;| = 2.5.

To understand why individuals always swim faster on
average when hydrodynamic interactions are taken into
account, we computed the probability of presence of other
swimmers in the framework of each individual (Fig. 4). For
the same parameter values as in Fig. 2, we collected the
position and orientation of each swimmer during At = 900.
For the swarming phase [Fig. 4(a)], the probability of
presence is isotropic. Hence, there is no velocity increase
due to dipolar hydrodynamic interactions on average.
However, for the schooling phase, individuals tend to
swim in line rather than side by side, leading to a density
distribution polarized along the vertical [Fig. 4(b)] or,
equivalently, 6;; preferentially around 0° or 180° (Fig. 1).
This induces a velocity increase along the swimming

direction | [see Eq. (3)]. The same is true for the milling
and turning phases [Figs. 4(c) and 4(d)].

Why do individuals tend to swim in line in the presence
of the fluid? To address this question, we examined the
preferential location of the nearest Voronoi neighbors in the
swarming and schooling phases, in the presence of the fluid
or not (Supplemental Material Fig. 3 [41]). It appears that
the preferential in-line configuration is only present in the
full hydrodynamic model. This is because the side-by-side
configuration becomes unstable when hydrodynamic inter-
actions are considered [40,43] (Supplemental Material
Fig. 4 [41]), and swimmers thus tend to spend more time
in line.
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Phase diagram using the value of the polarization P and the milling M as a color code (d), for three cases: (a) no fluid

(U; = Q; = 0), (b) fluid without induced rotation (U; # 0, Q; = 0), and (c¢) full hydrodynamic model (U; # 0, Q; # 0). In all cases, the
dipole intensity is /; = 1072, the solid white line indicates the M = 0.4 level, and the dashed line indicates the P = 0.5 level. Solid
black lines in (b),(c) show the V levels and the solid blue line in (a) shows the milling-schooling transition line found in [20]. In (c), the
black dots show the parameter values corresponding to Figs. 2(a)-2(d).

The role of the fluid is not only to increase the swimming
speed on average, but also to introduce a source of disorder.
To assess if this disorder has the same effective impact as
the noise 7,77 in Eq. (2) that describes the spontaneous angle
fluctuations, we performed simulations with no noise
(I, = 0) and with varying dipole intensity 7, [Fig. 5(a)].
The phase diagrams shown in Figs. 3(c) and 5(a) are
qualitatively similar, both exhibiting the four phases
(schooling, swarming, milling, and turning) with the same

(a)fw\ﬁ/g 0°

/

(c) millj 0° 0° turning
f ' /

90° . 90° - |
\ 001“0 | 1007‘0

0.2 0.4 0.6 0.8 1
P/Pmax

FIG. 4. Heat maps showing the probability of presence p(p, )
of all other swimmers in the framework of an individual:
(a) swarming for 7, =0.8, I; =0.5; (b) schooling for 7, = 0.5,
IH =9; (¢) milling for 7, = 0.3, I = 1.5; and (d) turning for
1,=02, 1 =4

topology. It thus shows that the hydrodynamic interactions
also play the role of a rotational noise. There are, however,
some differences between Figs. 3(c) and 5(a). First, the
average velocity increases when the dipole intensity
increases, whereas it tends to decrease with noise intensity.
Second, for large /¢ and small / |> even if P and M are both
small, the school does not behave as in the swarming phase.
It can be composed of very dense clusters of quasistatic
swimmers (Supplemental Material Fig. 5 [41]). This
nonrealistic behavior is an artifact of the simulations due
to the absence of noise.

There is a continuous transition between the milling,
turning, and schooling phases (Figs. 3 and 5). In a pure
behavioral model (with no fluid), the transition between
the milling and schooling is also continuous, but M is
systematically higher when the fluid is present [Fig. 5(b)].
Although the turning and milling phases are similar, their
origins are different. As Calovi et al. [20] already noted, the
milling phase can only be stabilized when swimmers have
an anisotropic visual perception [Fig. 1(b) and Eq. (4)]. On
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FIG. 5. (a) Phase diagram in the absence of noise (/,, = 0). The
color code and the contour levels are the same as in Fig. 3.
(b) Values of the polarization P (red), milling M (green), and
mean velocity V (black) for two cases: no fluid (/; = 0) and low
noise (I, = 0.05) with solid lines; full hydrodynamic model
Uy = 1072) and no noise (I, = 0) with open symbols.
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the contrary, the turning phase still exists when visual
perception is isotropic (Supplemental Material Fig. 7 [41]),
but requires the full hydrodynamic model to be observed.
Although experimental data are too scarce to support the
existence of the turning phase in real fish schools, we can
speculate that the speed enhancement achieved in this
phase could be advantageous to the group, for energetic
considerations or when confronted with danger. Note that
the milling and turning phases, when the number of
swimmers is large, can break into several smaller groups
and thus affect the value of the order parameters P and M
(Supplemental Material Movies 5-7 and Fig. 6 [41]).

In summary, we proposed a new model of collective fish
motion that includes behavioral rules and far-field hydro-
dynamic interactions. By simulating numerically the
dynamics of this model for a large group of swimmers,
we showed that, on average, fish swim faster in a school,
due to the presence of the fluid. This suggests that fish
would need less energy to swim in a school for a given
swimming speed. This emergent property results from the
preferential in-line pairing of swimmers, more robust than
the side-by-side configuration. In addition, we observed a
new phase, called the turning phase, which only exists with
the full hydrodynamic model. Finally, we showed that the
fluid has a similar effect as the spontaneous cognitive
rotational noise. These promising results underline the
importance of hydrodynamic interactions in fish schooling.
In future work, it will be important to assess the validity of
the far-field approximation used here by integrating the fish
wakes into the fluid model.
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