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We study the dynamics of the Fermi-Hubbard model driven by a time-periodic modulation of the
interaction within nonequilibrium dynamical mean-field theory. For moderate interaction, we find clear
evidence of thermalization to a genuine infinite-temperature state with no residual oscillations. Quite
differently, in the strongly correlated regime, we find a quasistationary extremely long-lived state with
oscillations synchronized with the drive (Floquet prethermalization). Remarkably, the nature of this state
dramatically changes upon tuning the drive frequency. In particular, we show the existence of a critical
frequency at which the system rapidly thermalizes despite the large interaction. We characterize this
resonant thermalization and provide an analytical understanding in terms of a breakdown of the periodic
Schrieffer-Wolff transformation.
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Recent advances in the ability to tailor and control light-
matter interaction on an ultrafast timescale [1–4] have
brought increasing interest in the manipulation of quantum
phases of matter with periodic driving fields. Notable
achievements are light-induced superconductivity [5,6],
metal-to-insulator transition [7], and control of microscopic
parameters such as the local interaction in organic Mott
insulators [8] and the band gap in excitonic insulators [9].
Similar ideas are applied to ultracold atoms in optical
lattices [10] where driving fields are used, for instance, to
engineer topological states [11].
From a theoretical perspective, periodically driven, or

Floquet, quantum systems are a long-standing subject of
studies ranging from dynamical localization [12] and
quantum dissipation [13] to quantum chaos [14] and, more
recently, isolated quantum many-body systems [15]. Other
topics of active research include drive-induced topological
states [16,17] and artificial gauge fields [18], driven
electron-phonon coupling [19–21], and integrable systems
[22], correlated electrons [23–26], or topological systems
[27,28] in the presence of dissipation.
In the absence of integrability and of many-body

localization, isolated out-of-equilibrium quantum many-
body systems are expected to show thermalization of local
observables at long times [29]. Driven systems, which lack
time translational invariance, are therefore brought to
thermalize to a featureless infinite-temperature state con-
sistent with maximum entropy and no energy conservation
[30–33]. Yet, the transient dynamics may leave space to
nontrivial extremely long-lived nonthermal states charac-
terized by oscillations synchronized with the drive, a
phenomenon known as Floquet prethermalization. This
prethermal behavior can emerge in the high frequency limit
[34–40] or be the consequence of a nearby integrable point

in the system parameter space. In this case, as recently
observed for weakly [41–43] and strongly [44,45] interact-
ing systems, there are many quasi-integrals of motion that
prevent thermalization except at very long times, similarly
to what happens after a quantum quench [46]. However,
many intriguing questions remain wide open especially
concerning the intermediate coupling and frequency
regimes, where the most remarkable phenomena are
expected to occur.
In this Letter we consider the Fermi-Hubbard model as a

paradigmatic example of strongly correlated electrons. The
system is subject to a time-periodic modulation of the
electron interaction, but it is otherwise isolated from any
external reservoir. Starting from a thermal equilibrium
state, we use nonequilibrium dynamical mean-field theory
(DMFT) [47] to calculate the time evolution induced by the
drive. First, we explicitly show that at moderate interaction
the system thermalizes to the infinite-temperature state.
Then, we turn to the regime of large interaction and find a
long-lived prethermal state synchronized with the drive,
except for a critical, resonant frequency where we find
thermalization and a behavior reminiscent of a dynamical
transition [48–50]. A periodic Schrieffer-Wolff transfor-
mation shows that the Floquet prethermalization is due to
the quasiconservation of double occupancy at large inter-
action, with the resonant thermalization emerging in
correspondence of a break down of such an expansion.
The system is governed by the following Hamiltonian:
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where UðtÞ ¼ U0 þ δU sinΩt is the periodically driven
interaction and Vij is the hopping, which is such that the

bare density of states reads ρðϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V2 − ϵ2

p
=ð2πV2Þ

(Bethe lattice). We take V as unit of energy, frequency,
and inverse of time (ℏ ¼ 1). In these units the bare
bandwidth is W ¼ 4 and the critical point of the Mott
transition in DMFT is at Uc ≃ 4.8 and at an inverse
temperature βc ≃ 20. We consider a thermal initial density
matrix ρð0Þ ¼ exp½−βHð0Þ� with β ¼ 5 and we fix the
drive amplitude δU ¼ 2 (cf. Supplemental Material [51],
Sec. I). For all times the interaction remains repulsive and
the system stays half-filled (hnσi ¼ 0.5) and particle-hole
symmetric.
To calculate the time evolution induced by the drive we

use nonequilibrium DMFT [47], which consists in mapping
the lattice model described by Eq. (1) onto a quantum
impurity problem with the following action:

S ¼ Sloc þ
Z
C
dtdt0

X
σ¼↑;↓

c†σðtÞΔσðt; t0Þcσðt0Þ; ð2Þ

where Sloc is the action associated with the local term
in Eq. (1), C is the three branch Keldysh contour [52],
and Δσðt; t0Þ ¼ V2Gσðt; t0Þ is the hybridization between
the impurity and a nonequilibrium bath, which is self-
consistently determined from the impurity Green function
Gσðt; t0Þ ¼ −ihTCcσðtÞc†σðt0Þi. Within the DMFT mapping,
the impurity Green function coincides with the local lattice
Green function and from it we can calculate various
quantities directly in the thermodynamic limit, such as
the double occupancy dðtÞ ¼ hni↑ðtÞni↓ðtÞi and the kinetic
energy KðtÞ ¼ P

ijσVijhc†iσðtÞcjσðtÞi. The computation of
the impurity Green function is a challenging task and,
despite recent progresses [53–55], an efficient and numeri-
cally exact approach is still lacking. Here we resort to the
noncrossing approximation [56–63] which consists of a
first order self-consistent hybridization expansion and
which we implement through a Dyson equation for the
impurity atomic-state propagator (cf. Supplemental
Material [51], Sec. III). For moderate interaction, we
benchmark the results with the next-order one-crossing
approximation (cf. Supplemental Material [51], Sec. IV).
We start by discussing the results for moderate average

interaction U0 ¼ 4 (Fig. 1). The double occupancy shows
fast oscillations with frequency comparable to the one of
the drive Ω superimposed to a slower but exponential
relaxation. Quite interestingly, after the initial transient and
despite the continuous driving, the oscillations get fully
damped and the double occupancy reaches the value dth ¼
0.25 independently of the frequency. This is the value of a
maximally disordered state and as such signals the thermal-
ization to infinite temperature. With an exponential fit we
can extract the thermalization time τth which is minimum
for Ω ≃ 4.8 and diverges for large frequency.

Thermalization is confirmed by the evolution of theGreen
function and, in particular, of the retarded component
GR

σ ðt; t0Þ ¼−iθðt− t0ÞhfcσðtÞ;c†σðt0Þgi and the lesser com-
ponent G<

σ ðt; t0Þ ¼ ihc†σðt0ÞcσðtÞi. In a thermal state these
functions depend only on the difference t − t0 ¼ τ and their
Fourier transform is related by the fluctuation-dissipation
theorem. Out of equilibrium one can perform a Fourier
transform with respect to τ at fixed t̄¼ðtþt0Þ=2 [64] and
obtain the spectral function Aðω; t̄Þ ¼ −1=π

P
σImGR

σ ðω; t̄Þ
and the occupation function Nðω; t̄Þ ¼ i=ð2πÞPσG

<
σ ðω; t̄Þ.

As a consequence of the time-dependent interaction, these
functions have oscillations in t̄ with period T ¼ 2π=Ω and
are even negative for some ω. To extract meaningful
information about the thermalization, which happens on
times τth ≫ T, we average Aðω; t̄Þ and Nðω; t̄Þ over a
few periods and obtain positive Āðω; t̄Þ and N̄ðω; t̄Þ
(cf. Supplemental Material [51], Sec. V). The distribution
function F̄ðω; t̄Þ ¼ N̄ðω; t̄Þ=Āðω; t̄Þ provides a simple indi-
cator for thermalization since in the thermal state it equals the
Fermi-Dirac distribution. In this case at early times we
observe a nonthermal distribution with a pseudoperiodic
structure inωwith periodΩ. This feature is related to the so-
called Floquet subbands characteristic of periodically driven
systems [23]. Then, at later times we observe a remarkably
flat distribution—clearly the only one to be at the same time
thermal and pseudoperiodic. This establishes that the fluc-
tuation-dissipation relation is satisfied with infinite temper-
ature and therefore confirms thermalization.

FIG. 1. Thermalization to infinite temperature (U0 ¼ 4). Top
panel: Double occupancy dðtÞ for various drive frequencies Ω
shows oscillations (shade) on top of an exponential relaxation
(solid line). Right inset: Thermalization time τthðΩÞ. Bottom
panels: Averaged spectral function Āðω; t̄Þ, occupation function
N̄ðω; t̄Þ, and distribution function F̄ðω; t̄Þ ¼ N̄ðω; t̄Þ=Āðω; t̄Þ for
Ω ¼ 4 show the evolution from the out-of-equilibrium state at
t̄ ¼ 10 to the infinite-temperature thermal state at t̄ ¼ 100.
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We now turn to the strong coupling regime at large
average interaction U0 ¼ 8 (Fig. 2). The transition from
moderate interaction appears to be rather smooth
(cf. Supplemental Material [51], Sec. I); however, for large
interaction, in contrast with above, we find qualitative
differences as a function of the drive frequency. As a first
indication, while for short times also in this case local
observables oscillate on top of an exponential relaxation,
now the stationary value depends on frequency. As we
detail in the following, this signals the existence of different
dynamical regimes. In particular, we find thermalization
and damping of the oscillations only for a critical fre-
quency, which we estimate to be Ω� ≃ 8.12, while for the
other frequencies we observe a long-lived prethermal state.
For frequency below Ω� the double occupancy and the

kinetic energy oscillate around an average which relaxes
exponentially to a nonthermal plateau after the initial
transient. While for moderate interaction these oscillations
damp out, here they persist with constant amplitude. We
calculate the Fourier transform ďðωÞ ¼ R

tmax
τpth

dteiωtdðtÞ,
where τpth is the prethermalization time when the plateau
is attained and tmax is the maximum simulation time. The
peaks of ď at multiples of Ω demonstrate the synchroniza-
tion of the oscillations with the drive. This, together with
the nonthermal value of the plateau, are the distinctive
features of a Floquet prethermal state in which the system
appears to be trapped for times longer than numerically
accessible. Since the plateau has a slight linear positive
slope, we can extrapolate it to intercept the thermal value
dth ¼ 0.25 and in this way estimate a thermalization time
τth which turns out to be orders of magnitude larger than at
moderate interaction.
For frequency above Ω� we find a very similar pre-

thermalization regime until, for Ω ≃U0 þW ¼ 12, we
observe a sharp threshold behavior. This value corresponds
to the maximum energy for single-particle excitations

above which the system appears to be unable to absorb
energy and local observables are almost constant and equal
to their initial equilibrium values. Accordingly, the thermal-
ization time grows exponentially with frequency, in agree-
ment with rigorous bounds [35,39]. We remark also that,
for a range of frequencies, the kinetic energy becomes
positive, which is characteristic of a highly nonequilibrium
state with population inversion. While a similar phenome-
non is observed in other Floquet systems [24], here it
cannot be ascribed to an effective change of sign of the
interaction, since this would also cause the double occu-
pancy to increase above 0.25.
The above picture radically changes for the critical

frequency Ω� ≃ 8.12 where fast thermalization is found
despite the large interaction. Here we observe an expo-
nential relaxation of the double occupancy and of the
kinetic energy to the thermal values, together with a full
damping of oscillations. At this specific frequency the
Floquet prethermal state is therefore melted away and the
system is able to relax to the infinite-temperature thermal
state. We name this phenomenon resonant thermalization
since for Ω� the periodic modulation of the interaction is
resonant with the energy ∼U0 of doublon excitations, i.e.,
excitations that change the double occupancy. This reso-
nant condition allows the absorption of energy from the
drive and the creation of doublons, which are otherwise
suppressed by the large average interaction through a well-
known bottleneck mechanism [65,66]. Remarkably, the
behavior of the system aroundΩ� is strongly reminiscent of
a dynamical transition [48–50]. This is clearly seen in the
estimated thermalization time τthðΩÞ which has a sharp
minimum for Ω�, as well as from the peak at ω ¼ Ω of the
Fourier transform ďðωÞ. The weight of this peak goes to
zero for Ω� with singular behavior, indicating the break-
down of synchronization and the approach to the stationary
thermal value.

FIG. 2. Floquet prethermalization and resonant thermalization (U0 ¼ 8). Left panel: Double occupancy dðtÞ for various drive
frequencies Ω shows oscillations (shade) on top of an exponential relaxation (solid line). Central panel: same for kinetic energy. Inset of
left panel: Fourier transform ďðωÞ. Right panels: Top left: stationary value dstðΩÞ with thermal value dth and initial value dðt ¼ 0Þ for
reference. Bottom left: same for kinetic energy. Top right: estimated thermalization time τthðΩÞ. Bottom right: weight of the peak
ďðω ¼ ΩÞ. Dotted lines mark the resonant frequencyΩ� ≃ 8.12. ForΩ ¼ 7, 9 we see Floquet prethermalization with dst ≠ dth,Kst ≠ Kth

and ď peaked at ω ¼ �Ω,�2Ω. ForΩ ¼ Ω� not only dst ¼ dth andKst ¼ Kth but also the sharp minimum of τthðΩÞ and the vanishing of
ďðω ¼ ΩÞ signal the resonant thermalization.
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The above results are corroborated by the evolution of
the spectral, occupation, and distribution functions (Fig. 3).
After the initial transient, these functions reach a stationary
state independent of t̄. This confirms that the plateau of the
local observables corresponds to a true steady state of the
system. For Ω ≠ Ω� the distribution function F̄ðω; t̄Þ is
clearly nonthermal and pseudo-Ω periodic, as also found
for the nonthermal transient at moderate interaction. On the
opposite, for the critical frequencyΩ� we find a remarkably
flat distribution which confirms the thermalization at
infinite temperature. Interestingly, forΩ > Ω�, correspond-
ing to positive kinetic energy, we indeed find a population
inversion, as it is clear from the shift towards high energy of
N̄ and the change of slope of F̄ with respect to Ω < Ω�.
To gain an analytical insight into the Floquet pretherm-

alization and the resonant thermalization we use a Floquet
Schrieffer-Wolff transformation [67–69]. This conveniently
describes the strong coupling regime, where doublon
excitations are suppressed because of the large average
interaction, thus preventing the system from absorbing
energy unless the frequency of the drive is resonant with the
doublon energy. In practice, we introduce a time-periodic
unitary RðtÞ ¼ exp½SðtÞ� which eliminates perturbatively in
V=U0 the terms that do not conserve the double occupancy
in the transformed Hamiltonian H̃ ¼ eSHe−S − i∂tS. This
is obtained with an ansatz SðtÞ ¼ ðV=U0Þ½αðtÞKþ −
α�ðtÞK−� where αðtÞ is a periodic function determined
imposing the vanishing of the commutator ½H̃;

P
ini↑ni↓�

up to terms of a given order in V=U0, and where we
decompose the kinetic energy in terms that do not change
(K0), increase (Kþ), or decrease (K−) the double occu-
pancy (cf. Supplemental Material [51], Sec. VI). For

generic drive frequency the transformation is well behaved
and at first order in V=U0 we find

dðtÞ ¼ dð0Þ − 2ðV=U0ÞRefαðTÞTr½ρð0ÞKþ�g
þ 2ðV=U0ÞRefαðtÞei

R
t

0
Uðt0Þdt0Tr½ρð0ÞKþðtÞ�g; ð3Þ

where KþðtÞ≡ eiVK0tKþe−iVK0t. Equation (3) captures the
Floquet prethermal state at long time multiples of T ¼
2π=Ω (stroboscopic evolution) when the double occupancy
is synchronized with the drive and oscillates around a
frequency-dependent nonthermal value. However, for the
critical value Ω� ≃ U0 and its submultiples, the function α
develops a singularity and the transformation breaks down.
This suggests that, at these frequencies, the Floquet
prethermal state is unstable towards thermalization through
nonperturbative processes in V=U0, as captured by DMFT.
Calculations at large interaction U0 ¼ 14 and drive ampli-
tude δU ¼ 6 clearly show the resonant thermalization for
frequencies Ω� and Ω�=2 (cf. Supplemental Material [51],
Sec. II).
The results we have presented here have a potential

impact on various experiments, ranging from ultracold
atoms in driven optical lattices, where one should observe a
sudden increase of the heating rate [70] at Ω ¼ Ω�, to
photoexcited organic Mott insulators [8], where one should
observe a sudden filling of the gap in the transient optical
conductivity. We also envisage further theoretical study, in
particular on the effect of nonlocal correlations in realistic
lattices, which are likely to affect the lifetime of the
prethermal plateau. Advances in the solution of the
impurity problem would also be important, as they would
permit further investigations of the transition between
moderate and large interaction and the access to initial
states at lower temperature.
In conclusion, to study periodically driven strongly

correlated electrons, we have considered the Fermi-
Hubbard model with time-periodic interaction. Within
nonequilibrium DMFT we have calculated the evolution
of local observables and of the local Green function, which
provide evidence for thermalization or prethermalization.
We have showed the existence of three dynamical regimes:
(i) Thermalization to infinite temperature at moderate
interaction, as expected for generic isolated quantum
many-body systems; (ii) Floquet prethermalization at large
interaction, characterized by oscillations of local observables
around a nonthermal plateau and a stationary nonthermal
distribution function; (iii) resonant thermalization at large
interaction for an isolated critical frequency Ω�, where local
observables relax exponentially to the infinite-temperature
thermal value, together with a damping of oscillations and a
flat distribution function. We have then developed a periodic
Schrieffer-Wolff transformation that captures the qualitative
features of the Floquet prethermal state and whose

FIG. 3. Averaged spectral function Āðω; t̄Þ, occupation function
N̄ðω; t̄Þ, and F̄ðω; t̄Þ ¼ N̄ðω; t̄Þ=Āðω; t̄Þ for U0 ¼ 8 and t̄ ¼ 100.
Prethermalization for Ω ¼ 7, 9 and thermalization for
Ω ¼ Ω� ≃ 8.12. For Ω ¼ 9 the population inversion is clear
from the shift of N̄ towards higher energy and the change of slop
of F̄ with respect to Ω ¼ 7. Dotted lines mark the approximate
middle of the Hubbard bands.
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breakdown forΩ� indicates the nonperturbative nature of the
resonant thermalization phenomenon.
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