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Theory of the Interfacial Dzyaloshinskii-Moriya Interaction in Rashba Antiferromagnets
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In antiferromagnetic (AFM) thin films, broken inversion symmetry or coupling to adjacent heavy metals
can induce Dzyaloshinskii-Moriya (DM) interactions. Knowledge of the DM parameters is essential for
understanding and designing exotic spin structures, such as hedgehog Skyrmions and chiral Néel walls,
which are attractive for use in novel information storage technologies. We introduce a framework for
computing the DM interaction in two-dimensional Rashba antiferromagnets. Unlike in Rashba ferro-
magnets, the DM interaction is not suppressed even at low temperatures. The material parameters control
both the strength and the sign of the interfacial DM interaction. Our results suggest a route toward
controlling the DM interaction in AFM materials by means of doping and electric fields.
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Relativistic spin-orbit coupling (SOC) is the foundation
of spin orbitronics, a rapidly developing branch of spin-
tronics [1,2]. Anisotropic magnetoresistance [3] and the
anomalous Hall effect [4] are established SOC transport
phenomena. More recent discoveries include the spin Hall
and inverse spin Hall effects [5], topological surface states
[2,6,7], spin-orbit torques [1,8—11], and chiral domain
walls and Skyrmions [12-18]. These phenomena are
essential to enable novel ultrafast, nonvolatile, nanoscale
spin-based storage and computation devices.

The Dzyaloshinskii-Moriya (DM) interaction between
localized spins in a magnetic material is induced by SOC
[19,20]. The DM interaction is important for stabilizing
noncollinear magnetic structures in ferromagnets. The
original proposal by Dzyaloshinskii and Moriya, however,
concerned antiferromagnetic (AFM) systems with weak
magnetization, i.e., weak ferromagnets; this weak magnet-
ism can be explained in terms of antisymmetric exchange,
which is also referred to as the DM interaction.

The energy associated with the DM interaction between
two neighboring spins in a lattice, S; and S,, can be written
in the form of the mixed product Hpy = =Dy, - 81 X S5,
where Dy, is called the DM vector. The DM interaction,
therefore, favors a perpendicular orientation of neighboring
spins. By contrast, the Heisenberg exchange interaction
Heox = JoxS1 - S, favors a collinear magnetic order, which
can be either ferromagnetic (FM) for J, <0 or AFM
for J., > 0. The competition between the Heisenberg
exchange interaction and the DM interaction leads to the
formation of exotic structures such as chiral domain walls,
helices, and Skyrmions [2].
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In the bulk of a noncentrosymmetric magnetic crystal,
the DM vector points along one of the lattice vectors and
gives rise to so-called Bloch-like structures [19-21]. In an
ultrathin magnetic film with impurity- or interface-induced
SOC, there is also an interfacial DM interaction that
corresponds to a DM vector pointing out along the inter-
face. This gives rise to so-called Néel-type textures
[21-26]. Both the sign and the amplitude of the DM vector
are of critical importance for observing and engineering
different chiral structures [27-43].
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FIG. 1. (a) The Rashba-AFM model is a model for systems with
inversion asymmetry: an AFM/HM bilayer (left) and an AFM
thin film asymmetrically embedded between two different in-
sulator layers (right). (b),(c) Electronic dispersion relations in the
limit of strong exchange coupling (b) and in the limit of high SOC
(c). The superscript 7 = £ refers to the conduction (blue) and
valence (red) bands, whereas the superscript s = 4 specifies
chiral bands. In these two extreme limits, the band structure is
almost isotropic for an AFM system with in-plane anisotropy.
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AFM materials have recently attracted considerable
attention as active spintronics elements [44,45]. The absence
of stray fields, the possibility of operating at terahertz
frequencies, and the existence of spin waves with opposite
helicities make antiferromagnets promising candidates for
use in the next generation of spin-based memory and
processing devices [44,45] with a nanoscale element base.

The coexistence of strong SOC and spin ordering at
the interfaces of AFM/heavy-metal (HM) bilayers makes
such heterostructures particularly promising for low-
dimensional spin-orbitronics applications [46]. An AFM
thin film sandwiched between insulators is also a common
functional geometry for spin orbitronics due to interfacial
SOC. The interfacial SOC in such a system is effectively
described by Rashba SOC [47]. For magnetic films, the
two-dimensional (2D) Rashba model captures the main
physics and trends of SOC with a broken inversion
symmetry [47], such as fieldlike and dampinglike spin-
orbit torques [1,9,10], intrinsic spin Hall effects [5],
intrinsic anomalous Hall effects [48], inverse Faraday
effects [49], and magnetic anisotropy [50].

In this Letter, we develop a framework for computing the
interfacial DM interaction in AFM layers with inversion
asymmetry. The typical system illustrated in Fig. 1 is
described on the basis of an effective 2D AFM-Rashba
Hamiltonian. We find that both the sign and the magnitude
of the DM vector depend on the ratio relating three energy
scales: the chemical potential, the s-d exchange interaction,
and the Rashba SOC strength. In particular, the strong
dependence on the chemical potential suggests that the DM
interaction can be tuned by modifying the electron density
by means of doping or voltage gating [51].

A generic effective 2D Hamiltonian describing itinerant
electrons in the AFM layer [see Fig. 1(a)] can be written as

H:Hkin+Hsd+Hso’ (1)

where Hy;, is the kinetic energy of the electrons, H,, =
Jon - T describes an effective interaction with a strength
J,q between the spins of the itinerant s electrons and the
localized d electrons [52], and Hgq describes the SOC. The
operator I' is the direct product of the electron spin operator
and the sublattice position operator, which, in the case of an
AFM system, accounts for the effects of sublattice stagger-
ing. The unit vector n is the order parameter, which can
represent either the total magnetization in a ferromagnet or
the staggered magnetization in an antiferromagnet.

We compute the electronic contributions to the DM
interaction parameter D and to the exchange stiffness A in
the following way. First, we evaluate how the itinerant
electrons influence the magnetic subsystem by finding an
effective action. We expand the effective action up to linear
order with respect to the deviation of the spins from their
equilibrium direction. The corresponding susceptibility
tensor describes the influence of the electronic degrees

of freedom on the localized magnetic moments. A linear
expansion of the susceptibility tensor in spatial gradients of
n defines the DM interaction strength D. The contribution
of the itinerant electrons to the exchange stiffness A is
extracted from the second-order expansion in spatial
gradients.

The action S defines the system partition function Z =
[ d[®@*]d[®]d[n]e~SI®"®nl/h where @ is the Grassmannian
coherent-state spinor and 7 is Planck’s constant. In the s-d
approach to magnetic systems, the action is decomposed into
the sum S = Sy + Sp, where Sy [®*, @, r] is the fermionic
action corresponding to the Hamiltonian of Eq. (1), which
also includes the s-d coupling, and Sg(n] is the bosonic
action describing the dynamics of the localized spins
(magnons) in the absence of itinerant electrons. In our model,
itis the coupling between the itinerant electrons and the local
moments that determine the DM interaction, which is also
directly linked to the SOC of the itinerant electrons. We will
not specify the bosonic part of the action Sg[n], since it is
irrelevant for the subsequent discussion.

The fermionic action reads

hp
Sy = // drdr // drdr' ®; [-hG), @y, (2)
A o,

where f = 1/kpT is the inverse temperature and 7 is the
imaginary time. The inverse Green’s function operator is
hG, . . = —(hd, + H)5(r —r')é(z — ') in terms of the
Hamiltonian of Eq. (1). We compute the effective theory for
the vector field n(r) by integrating out the fermionic
degrees of freedom. This standard procedure results in
an additional, effective contribution to the bosonic action of
the form AS" [n] = [V dz [ dr{-ATt[In(~G™")]}. Below,
we analyze AS%![n] and its influence on the magnet in the
AFM-Rashba model.

In our system, the symmetry-breaking direction (z direc-
tion) is perpendicular to the plane [31]. Without the loss of
generality, we choose the x axis to be in the direction of the
in-plane vector field n. A small deviation of the unit vector
from its equilibrium direction is, then, parameterized by
n =%+ én, where on = (—(énj + 6n?)/2,6n,,6n,). The
effective action is obtained from a perturbation with respect
to on [52] that holds irrespective of the value of the exchange
strength J ;. The effective action is conveniently established
from the Dyson equation G~! = G°~! — %, where the
unperturbed Green’s function refers to érn =0 and the
self-energy 7% = J,6n - T5(r —r')6(z — ) is introduced.

Computing the self-energy up to the second order in én
yields [53]

AS[n] = hﬂztsn;mn,ggylani ks (3)
k#0,1

where the indices a, b = (y, z) denote the transverse vector
components with respect to the equilibrium X direction,
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FIG. 2. (a)The Feynman diagram corresponding to Eq. (4) for a
single-loop polarizability tensor. (b) The Feynman diagram
corresponding to Eq. (5), describing the interfacial DM inter-
action for a system with inversion symmetry breaking in the z
direction and an order parameter vector r in the x direction.

v; = 2nx/p denotes the bosonic Matsubara frequencies,
and

_ 0
I, = ZhﬂZTrF G0, 0Gy ki, i) (4)

is the dynamical susceptibility tensor, pictured schemati-
cally in Fig. 2(a). Here, G°. = (ihw,—H)™' is the
equilibrium Green’s function, and the w, = (2n+ )z/p
are the fermionic Matsubara frequencies. We compute the
sum over the fermionic Matsubara frequencies by using
the identity >, (ihw, — E)~'/p = f(E), where f(E) is the
Fermi distribution.

By expanding the static limit, ; =0, on the spin
susceptibility to the second order in the wave vector k,
we find both the electronic contribution to the symmetric
Heisenberg exchange stiffness, which is determined by the
symmetric terms in the diagonal elements of the suscep-
tibility tensor, and the antisymmetric exchange interaction
(DM interaction), which is determined by the antisymmet-

ric terms in the off-diagonal elements. From the partition
] ~SMn]/h _
e =

q.iw,

function of the canonical ensemble, Z = f dn
[ dln]e T, we obtain 5,8 /h = B5,F[n), where the
micromagnetic free energy, including the stiffness and the
DM interaction, is F[n]= [d*r[A —Dn-(2xV)xn].
By comparing the IIllCI'OSCOplC free energy with the
expression for the effective action, Eq. (3), we define the
micromagnetic parameters A and D, which characterize
the free carrier contributions to the exchange stiffness and
the DM interaction, respectively.

Upon expanding the off-diagonal elements of the tensor
IT to the first order in the wave vector k [see Fig. 2(b)], we
obtain the relation

yz zy
p=iZ — %k (5a)
y k=0 y k=0
~J?d 0 0 0
= zz—ZTr[F G T.GYy 1,GY 1. (SD)
q.n

where v, = h7'0H,/dq, is the y component of the
velocity operator. From the second-order terms, we obtain
the electron contribution to the exchange stiffness:

oITY
ok

I
K o

A= (6)

In our model, A describes the contribution to the AFM
exchange interaction from a superexchange-type interac-
tion between the localized spins in the AFM layer via the
itinerant spins.

We should emphasize here that, in this approach, we
have ignored the spin fluctuations of the localized AFM
spins, which is a valid omission as long as the system
temperature is much less than the critical Néel temperature.

To model an AFM system with interfacial SOC, we use
the 2D AFM-Rashba Hamiltonian [10,11] on a square
lattice:

H = 17,00 + Ja7.6 -1 — agz, (6 X k) - 2, (7)
where o and 7 are the vectors of Pauli matrices representing
the spin and AFM sublattice degree of freedom, respec-
tively; o is the identity matrix; n is the staggered order
parameter (the normalized Néel vector); and a, is the strength
of the Rashba SOC. The kinetic energy of the itinerant
electrons is y; = a’t(k* — k3), where ¢ is the nearest-
neighbor hopping energy and k, = 2/a, with a being the
lattice constant.

The band structure of the AFM-Rashba Hamiltonian of
Eq. (7) is, in general, anisotropic. It is convenient to
parameterize the four spectral branches as follows:

E" = '7\/ v+ Jog + apk® + 2sagké, (8)

where s,7 = £1 are the spin chirality and electron or
hole band indices, respectively. We also introduce &, =
(y2 + J?,cos? ¢)!'/? with the in-plane wave vector k para-
meterized by the angle ¢, such that k = k(cos ¢, sin ¢, 0).

Let us now analyze the expressions of Egs. (5) and (6)
for the AFM-Rashba Hamiltonian of Eq. (7) in the limit of
weak spin-orbit interaction, {kgag, Jq} < min{t, ¢z}, and
at zero temperature. Using the relation I', =1,0,, we

obtain the relation
AK3
D= ( . )a )

where the stiffness parameter is

1, 2 —e2/16,
- 2zer | 1

< 41,
o (10)
er > 4t,

which is manifestly independent of the SOC strength in the
limit of weak spin-orbit interaction. Here, the Fermi energy
€r is measured with respect to the center of the energy gap
[see Figs. 1(b) and 1(c)]. In this regime, the energy gaps at
k =0 and k = *k, are equal to 8¢ and 2J,,, respectively.
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For the case in which the Fermi energy lies within
the band gap, i.e., for |ep| < J,; and in the limit of
koar < Jo4 < t, we obtain

oo () an

which is of the opposite sign compared with the metallic
regime of Eqgs. (9) and (10).

It is instructive to compare the results of Eqgs. (9)-(11)
with those for a Rashba-FM system [54]. If both FM chiral
bands are occupied (e > J,,), the interfacial DM inter-
action in the Rashba-FM model vanishes at zero temper-
ature due to the exact cancellation between the Fermi
surface and Fermi sea contributions [54]. However, such a
cancellation is absent in the AFM-Rashba model, giving
rise to a finite result for Eq. (9), by virtue of an additional
contribution from the valence bands. For e¢r < J,, i.e.,
when only the lowest FM chiral band is occupied, the DM
interaction in the weak SOC limit and at zero temperature is
finite and linearly proportional to A [26,54-56].

On the other hand, in the Dirac model of an
FM/topological-insulator bilayer characterized by the
Hamiltonian of the Rashba SOC symmetry, the DM
interaction vanishes inside the gap but remains finite
outside the gap, even at zero temperature [57,58]. Thus,
we conclude that the DM interaction exhibits a qualitatively
different behavior in antiferromagnets compared with that
in ferromagnets.

In Fig. 3, we illustrate the behavior of the DM interaction
on the basis of a numerical analysis of Eq. (5) beyond
the weak SOC regime of Eqs. (9)—-(11), where typical
material parameters are assumed: t =3 eV, e =2 eV,
Jog=1¢eV, a=04nm, and kgap = 0.1 eV [10]. The
results indicate a rather large interfacial DM interaction,
with D ~ —1.6 pJ/m. Moreover, when the Fermi energy
lies within the gap, i.e., |ex| < J,4, we find an order-of-
magnitude enhancement of the DM interaction with the
opposite sign, D ~ 12.7 pJ/m. Importantly, the estimated
strength of the DM interaction is at least an order of
magnitude larger than that for a Rashba-FM layer with the
same parameters [54].

For small Fermi energies, the DM interaction is positive
and almost independent of the Fermi energy (see the top
panel in Fig. 3), as might be expected from Eq. (11). In the
metallic regime (i.e., for Fermi energies well above the
gap), the DM interaction is negative, and its strength
decreases in proportion to €z, in good agreement with
Egs. (9) and (10). The sign inversion of the DM interaction

is rather sharp and occurs at ep = {/J%, + akk3. The

bottom panel in Fig. 3 also confirms that the strength of
the DM interaction is linearly proportional to ap in the
weak SOC regime, in agreement with Eq. (9). Thus, we
conclude that the DM interaction in an AFM material may

10
0
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a 10
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- Jsd=0-1 ev, koaR=1 .OeV
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FIG. 3. Numerical results for the DM interaction as a function

of the Fermi energy (top) and of the SOC strength (bottom)
for different values of the s-d exchange interaction. We set
erp =2¢eV and r =3 eV in all cases.

vary by orders of magnitude depending on the material
parameters, as illustrated in Fig. 3.

Our calculations also show that, unlike in FM-Rashba
systems [54], the temperature dependence of the DM
interaction in the AFM-Rashba model of Eq. (7) is weak
due to a large contribution to the DM interaction from the
valence bands (not shown). As we have already discussed,
this is correct if the system temperature is much less than
the Néel temperature, i.e., in a regime in which the spin
fluctuations of the AFM layer are suppressed.

Controlling the DM interaction is essential for engineer-
ing chiral magnetic structures. If the DM interaction
parameter exceeds a certain critical value, which is deter-
mined by the Heisenberg exchange interaction and the
uniaxial anisotropy, then the ground state changes from a
collinear configuration to either a helimagnetic state or a
Skyrmion lattice. A weaker DM interaction enables the
stabilization of isolated Skyrmions in a metastable state
[16,18]. In chiral magnets, the sign of the DM interaction
determines the direction, or handedness, of spin rotation.

The asymmetry of the spin-wave dispersion in spin-
polarized electron energy-loss spectroscopy and Brillouin
light scattering is a measure of the DM interaction in FM
systems [27,30,59]. Although the interfacial DM inter-
actions in a few FM/HM bilayers have been experimentally

197202-4



PHYSICAL REVIEW LETTERS 120, 197202 (2018)

studied in recent years [29-40,59,60], we are not aware of
similar measurements in AFM heterostructures. However,
the first observation of a bulk DM interaction in an AFM
system, namely, the noncentrosymmetric a — Cu,V,05,
has recently been reported in Ref. [41] based on inelastic
neutron scattering. Very recently, a large DM interaction in
Fe/lIr bilayers on Rh(001) has been predicted on the basis of
ab initio calculations [61]. We hope that our work will
stimulate new experiments and ab initio works on such
AFM heterostructures.

In summary, we have computed the DM interaction, both
analytically and numerically, using an effective model for
AFM layers with interfacial Rashba SOC. In the AFM-
Rashba model, the induced interfacial DM interaction
appears as a Lifshitz-type invariant term. Our results show
that both the sign and the strength of the DM interaction
may be tuned by modifying the electron density, e.g., by
applying a gate voltage or through doping. This tunability
implies that a rich variety of chiral magnetic structures can
emerge in layered AFM/HM systems with different inter-
facial charge densities, s-d exchange interactions, and SOC
interactions.

The research leading to these results was supported by
the European Research Council via Advanced Grant
No. 669442, “Insulatronics,” and by the Research
Council of Norway through its Centres of Excellence
funding scheme, Project No. 262633, “QuSpin.” We also
acknowledge the support received from the Dutch Science
Foundation, NWO/FOM 13PR3118; the European
Commission; and the Russian Science Foundation under
Project No. 17-12-01359. R. A.D. is part of the D-ITP
consortium, a program of the Netherlands Organisation for
Scientific Research (NWO) that is funded by the Dutch
Ministry of Education, Culture and Science (OCW). M. T.
acknowledges support from an ITMO visiting professor
fellowship.

[1] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A.
Duine, Nat. Mater. 14, 871 (2015).

[2] A. Soumyanarayanan, N. Reyren, A. Fert, and C.
Panagopoulos, Nature (London) 539, 509 (2016).

[3] W. Thomson, Proc. R. Soc. Lond. 8, 546 (1857).

[4] E. Hall, Philos. Mag. 12, 157 (1881).

[5] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and
T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).

[6] P. Roushan, J. Seo, C. V. Parker, Y.S. Hor, D. Hsieh, D.
Qian, A. Richardella, M.Z. Hasan, R.J. Cava, and A.
Yazdani, Nature (London) 460, 1106 (2009).

[7]1 T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He, L.
Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q.-K. Xue,
Phys. Rev. B 79, 094422 (2009).

[8] A. Manchon and S. Zhang, Phys. Rev. B 79, 094422
(2009).

[9] A. Qaiumzadeh, R. A. Duine, and M. Titov, Phys. Rev. B
92, 014402 (2015).

[10] J. Zelezny, H. Gao, A. Manchon, F. Freimuth, Y. Mokrousov,
J.Zemen, J. Masek, J. Sinova, and T. Jungwirth, Phys. Rev. B
95, 014403 (2017); J. Zelezn)’/, H. Gao, K. Vyborny, J.
Zemen, J. MaSek, A. Manchon, J. Wunderlich, J. Sinova, and
T. Jungwirth, Phys. Rev. Lett. 113, 157201 (2014).

[11] H. B. M. Saidaoui and A. Manchon, arXiv:1606.04261.

[12] S.Miihlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.
Neubauer, R. Georgii, and P. Boni, Science 323, 915 (2009).

[13] W. Jiang, G. Chen, K. Liu, J. Zang, S. G. E. te Velthuis, and
A. Hoffmann, Phys. Rep. 704, 1 (2017).

[14] A. Thiaville, S. Rohart, E. Jué, V. Cros, and A. Fert,
Europhys. Lett. 100, 57002 (2012).

[15] S. Emori, U. Bauer, S.-M. Ahn, E. Martinez, and G. S. D.
Beach, Nat. Mater. 12, 611 (2013).

[16] V. Flovik, A. Qaiumzadeh, A. K. Nandy, C. Heo, and T.
Rasing, Phys. Rev. B 96, 140411(R) (2017).

[17] A. Qaiumzadeh, L. A. Kristiansen, and A. Brataas, Phys.
Rev. B 97, 020402(R) (2018).

[18] D. Yudin, D.R. Gulevich, and M. Titov, Phys. Rev. Lett.
119, 147202 (2017).

[19] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958); J.
Exp. Theor. Phys. 32, 1547 (1957).

[20] T. Moriya, Phys. Rev. 120, 91 (1960); Phys. Rev. Lett. 4,
228 (1960).

[21] M. Heide, G. Bihlmayer, and S. Bliigel, Phys. Rev. B 78,
140403(R) (2008).

[22] A. Fert, Mater. Sci. Forum 59-60, 439 (1990); A. Fert and
P.M. Levy, Phys. Rev. Lett. 44, 1538 (1980).

[23] A.N. Bogdanov and D. A. Yablonskii, Sov. Phys. JETP 68,
101 (1989); 69, 142 (1989).

[24] A. Crépieux and C. Lacroix, J. Magn. Magn. Mater. 182,
341 (1998).

[25] A.N. Bogdanov and U.K. RoBler, Phys. Rev. Lett. 87,
037203 (2001).

[26] J.-H. Moon, S.-M. Seo, K.-J. Lee, K.-W. Kim, J. Ryu, H.-W.
Lee, R. D. McMichael, and M. D. Stiles, Phys. Rev. B 88,
184404 (2013); K.-W. Kim, H.-W. Lee, K.-J. Lee, and M. D.
Stiles, Phys. Rev. Lett. 111, 216601 (2013).

[27] Kh. Zakeri, Y. Zhang, J. Prokop, T.-H. Chuang, N. Sakr,
W. X. Tang, and J. Kirschner, Phys. Rev. Lett. 104, 137203
(2010); Kh. Zakeri, Y. Zhang, T.-H. Chuang, and J.
Kirschner, ibid. 108, 197205 (2012).

[28] V.E. Dmitrienko, E.N. Ovchinnikova, S.P. Collins, G.
Nisbet, G. Beutier, Y. O. Kvashnin, V. V. Mazurenko, A. 1.
Lichtenstein, and M. I. Katsnelson, Nat. Phys. 10,202 (2014).

[29] A.K.Chaurasiya,C.Banerjee, S. Pan, S. Sahoo, S. Choudhury,
J. Sinha, and A. Barman, Sci. Rep. 6, 32592 (2016).

[30] J. Cho, N.-H. Kim, S. Lee, J.-S. Kim, R. Lavrijsen, A.
Solignac, Y. Yin, D.-S. Han, N.J.J. van Hoof, H.J. M.
Swagten, B. Koopmans, and C.-Y. You, Nat. Commun. 6,
7635 (2015).

[31] M. Belmeguenai, J.-P. Adam, Y. Roussigné, S. Eimer, T.
Devolder, J.-V. Kim, S. M. Cherif, A. Stashkevich, and A.
Thiaville, Phys. Rev. B 91, 180405(R) (2015).

[32] H.S.Korner, J. Stigloher, H. G. Bauer, H. Hata, T. Taniguchi,
T. Moriyama, T. Ono, and C.H. Back, Phys. Rev. B 92,
220413(R) (2015).

[33] K. Di, V.L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok, J. Yu,
J. Yoon, X. Qiu, and H. Yang, Phys. Rev. Lett. 114, 047201
(2015).

197202-5


https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nature19820
https://doi.org/10.1098/rspl.1856.0144
https://doi.org/10.1080/14786448108627086
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1038/nature08308
https://doi.org/10.1103/PhysRevB.79.094422
https://doi.org/10.1103/PhysRevB.79.094422
https://doi.org/10.1103/PhysRevB.79.094422
https://doi.org/10.1103/PhysRevB.92.014402
https://doi.org/10.1103/PhysRevB.92.014402
https://doi.org/10.1103/PhysRevB.95.014403
https://doi.org/10.1103/PhysRevB.95.014403
https://doi.org/10.1103/PhysRevLett.113.157201
http://arXiv.org/abs/1606.04261
https://doi.org/10.1126/science.1166767
https://doi.org/10.1016/j.physrep.2017.08.001
https://doi.org/10.1209/0295-5075/100/57002
https://doi.org/10.1038/nmat3675
https://doi.org/10.1103/PhysRevB.96.140411
https://doi.org/10.1103/PhysRevB.97.020402
https://doi.org/10.1103/PhysRevB.97.020402
https://doi.org/10.1103/PhysRevLett.119.147202
https://doi.org/10.1103/PhysRevLett.119.147202
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1103/PhysRevB.78.140403
https://doi.org/10.1103/PhysRevB.78.140403
https://doi.org/10.4028/www.scientific.net/MSF.59-60.439
https://doi.org/10.1103/PhysRevLett.44.1538
https://doi.org/
https://doi.org/10.1016/S0304-8853(97)01044-5
https://doi.org/10.1016/S0304-8853(97)01044-5
https://doi.org/10.1103/PhysRevLett.87.037203
https://doi.org/10.1103/PhysRevLett.87.037203
https://doi.org/10.1103/PhysRevB.88.184404
https://doi.org/10.1103/PhysRevB.88.184404
https://doi.org/10.1103/PhysRevLett.111.216601
https://doi.org/10.1103/PhysRevLett.104.137203
https://doi.org/10.1103/PhysRevLett.104.137203
https://doi.org/10.1103/PhysRevLett.108.197205
https://doi.org/10.1038/nphys2859
https://doi.org/10.1038/srep32592
https://doi.org/10.1038/ncomms8635
https://doi.org/10.1038/ncomms8635
https://doi.org/10.1103/PhysRevB.91.180405
https://doi.org/10.1103/PhysRevB.92.220413
https://doi.org/10.1103/PhysRevB.92.220413
https://doi.org/10.1103/PhysRevLett.114.047201
https://doi.org/10.1103/PhysRevLett.114.047201

PHYSICAL REVIEW LETTERS 120, 197202 (2018)

[34] H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev,
Phys. Rev. Lett. 115, 267210 (2015).

[35] H. T. Nembach, J. M. Shaw, M. Weiler, E. Jué, and T.J.
Silva, Nat. Phys. 11, 825 (2015).

[36] A. Hrabec, M. Belmeguenai, A. Stashkevich, S. M. Chérif,
S. Rohart, Y. Roussigné, and A. Thiaville, Appl. Phys. Lett.
110, 242402 (2017).

[37] R.M.Rowan-Robinson, A. A. Stashkevich, Y. Roussigne, M.
Belmeguenai, S.-M. Cherif, A. Thiaville, T. P. A. Hase, A. T.
Hindmarch, and D. Atkinson, Sci. Rep. 7, 16835 (2017).

[38] X.Ma, G. Yu, X. Li, T. Wang, D. Wu, K. S. Olsson, Z. Chu,
K. An, J. Q. Xiao, K. L. Wang, and X. Li, Phys. Rev. B 94,
180408(R) (2016).

[39] H. Yang, G. Chen, A.A.C. Cotta, A.T. N’Diaye, S.A.
Nikolaev, E. A. Soares, W. A. A. Macedo, A. K. Schmid, A.
Fert, and M. Chshiev, arXiv:1704.09023.

[40] M. Bacani, M. A. Marioni, J. Schwenk, and H.J. Hug,
arXiv:1609.01615.

[41] G. Gitgeatpong, Y. Zhao, P. Piyawongwatthana, Y. Qiu, L.
W. Harriger, N. P. Butch, T.J. Sato, and K. Matan, Phys.
Rev. Lett. 119, 047201 (2017).

[42] L. Udvardi and L. Szunyogh, Phys. Rev. Lett. 102, 207204
(2009).

[43] J. Gayles, F. Freimuth, T. Schena, G. Lani, P. Mavropoulos,
R. A. Duine, S. Bliigel, J. Sinova, and Y. Mokrousov, Phys.
Rev. Lett. 115, 036602 (2015).

[44] T.Jungwirth, J. Sinova, A. Manchon, X. Marti, J. Wunderlich,
and C. Felser, arXiv:1705.10489; O. Gomonay, T. Jungwirth,
and J. Sinova, Phys. Status Solidi RRL 11, 1700022 (2017);
T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Nat.
Nanotechnol. 11, 231 (2016).

[45] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and
Y. Tserkovnyak, Phys. Rev. Mod. 90, 015005 (2018).

[46] F. Hellman et al., Rev. Mod. Phys. 89, 025006 (2017).

[47] S. Grytsyuk, A. Belabbes, P. M. Haney, H.-W. Lee, K.-J.
Lee, M. D. Stiles, U. Schwingenschlogl, and A. Manchon,
Phys. Rev. B 93, 174421 (2016).

[48] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and
N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010).

[49] A. Qaiumzadeh and M. Titov, Phys. Rev. B 94, 014425
(2016).

[50] K.-W. Kim, K.-J. Lee, H.-W. Lee, and M. D. Stiles, Phys.
Rev. B 94, 184402 (2016).

[51] A.D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C.
Cancellieri, and J.-M. Triscone, Phys. Rev. Lett. 104,
126803 (2010).

[52] J. Schliemann, Phys. Rev. B 67, 045202 (2003); A.
Auerbach, Interacting Electrons and Quantum Magnetism
(Springer, New York, 1998).

[53] In general, the effective action has two extra terms
related to the spin susceptibilities with a long
wavelength nature, i.e., kK = 0, which have no contributions
in the exchange stiffness and DM interaction:
ASH[n] = np(ny” + >,6ng e 6n, ). The static spin
susceptibility related to the first-order term in

on® is y* = (Jsa/P)y, , Tr[T.Gy ], and the dynamic

spin susceptibility related to the second-order term

in - ont is TP =30, {~(sa/20B) X0 Gy, 1605 +

(sz/Q'hﬂ)Tr[raGg,imnrbGEI),iw,,+iy,]}’ where 6ab is the
Kronecker delta function.

[54] 1. A. Ado, A. Qaiumzadeh, R. A. Duine, A. Brataas, and M.
Titov, arXiv:1804.03739.

[55] F. Freimuth, S. Bliigel, and Y. Mokrousov, Phys. Rev. B 96,
054403 (2017); J. Phys. Condens. Matter 26, 104202 (2014).

[56] T. Kikuchi, T. Koretsune, R. Arita, and G. Tatara, Phys. Rev.
Lett. 116, 247201 (2016).

[57] R. Wakatsuki, M. Ezawa, and N. Nagaosa, Sci. Rep. 5§,
13638 (2015); T. Koretsune, N. Nagaosa, and R. Arita, Sci.
Rep. 5, 13302 (2015).

[58] Y. Tserkovnyak, D. A. Pesin, and D. Loss, Phys. Rev. B 91,
041121(R) (2015).

[59] M. Belmeguenai, H. Bouloussa, Y. Roussigne, M. S. Gabor,
T. Petrisor, Jr., C. Tiusan, H. Yang, A. Stashkevich, and
S. M. Chérif, Phys. Rev. B 96, 144402 (2017).

[60] X. Ma, G. Yu, S. A. Razavi, S.S. Sasaki, X. Li, K. Hao,
S. H. Tolbert, K. L. Wang, and X. Li, Phys. Rev. Lett. 119,
027202 (2017).

[61] S. Meyer, B. Dupé, P. Ferriani, and S. Heinze, Phys. Rev. B
96, 094408 (2017); A. Belabbes, G. Bihlmayer, F.
Bechstedt, S. Bliigel, and A. Manchon, Phys. Rev. Lett.
117, 247202 (2016).

197202-6


https://doi.org/10.1103/PhysRevLett.115.267210
https://doi.org/10.1038/nphys3418
https://doi.org/10.1063/1.4985649
https://doi.org/10.1063/1.4985649
https://doi.org/10.1038/s41598-017-17137-z
https://doi.org/10.1103/PhysRevB.94.180408
https://doi.org/10.1103/PhysRevB.94.180408
http://arXiv.org/abs/1704.09023
http://arXiv.org/abs/1609.01615
https://doi.org/10.1103/PhysRevLett.119.047201
https://doi.org/10.1103/PhysRevLett.119.047201
https://doi.org/10.1103/PhysRevLett.102.207204
https://doi.org/10.1103/PhysRevLett.102.207204
https://doi.org/10.1103/PhysRevLett.115.036602
https://doi.org/10.1103/PhysRevLett.115.036602
http://arXiv.org/abs/1705.10489
https://doi.org/10.1002/pssr.201700022
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1103/RevModPhys.90.015005
https://doi.org/10.1103/RevModPhys.89.025006
https://doi.org/10.1103/PhysRevB.93.174421
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/PhysRevB.94.014425
https://doi.org/10.1103/PhysRevB.94.014425
https://doi.org/10.1103/PhysRevB.94.184402
https://doi.org/10.1103/PhysRevB.94.184402
https://doi.org/10.1103/PhysRevLett.104.126803
https://doi.org/10.1103/PhysRevLett.104.126803
https://doi.org/10.1103/PhysRevB.67.045202
http://arXiv.org/abs/1804.03739
https://doi.org/10.1103/PhysRevB.96.054403
https://doi.org/10.1103/PhysRevB.96.054403
https://doi.org/10.1088/0953-8984/26/10/104202
https://doi.org/10.1103/PhysRevLett.116.247201
https://doi.org/10.1103/PhysRevLett.116.247201
https://doi.org/10.1038/srep13638
https://doi.org/10.1038/srep13638
https://doi.org/10.1038/srep13302
https://doi.org/10.1038/srep13302
https://doi.org/10.1103/PhysRevB.91.041121
https://doi.org/10.1103/PhysRevB.91.041121
https://doi.org/10.1103/PhysRevB.96.144402
https://doi.org/10.1103/PhysRevLett.119.027202
https://doi.org/10.1103/PhysRevLett.119.027202
https://doi.org/10.1103/PhysRevB.96.094408
https://doi.org/10.1103/PhysRevB.96.094408
https://doi.org/10.1103/PhysRevLett.117.247202
https://doi.org/10.1103/PhysRevLett.117.247202

