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Quantum mechanics tells us that the hopping integral between local orbitals makes the energy band
dispersive. In a lattice with geometric frustration, however, dispersionless flat bands may appear due to
quantum interference. Several models possessing flat bands have been proposed theoretically, and many
attracting magnetic and electronic properties are predicted. However, despite many attempts to realize these
models experimentally, compounds that are appropriately described by this model have not been found so
far. Here we show that pyrochlore oxides Sn2Nb2O7 and Sn2Ta2O7 are such examples, by performing first-
principles band calculation and several tight-binding analyses. Moreover, spin-polarized band calculation
shows that the hole-doped systems Sn2Nb2O6N and Sn2Ta2O6N have complete spin polarization, and their
magnetic moments are mostly carried by Sn-s and N-p orbitals, which are usually nonmagnetic. These
compounds are not only candidates for ferromagnets without a magnetic element, but also will provide an
experimental platform for a flat-band model which shows a wide range of physical properties.
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Geometric frustration causes various interesting proper-
ties. Let us consider a Hubbard model on a lattice, which is
drawn as a line graph of a bipartite lattice [1]. Such a class
of lattice includes a checkerboard lattice, kagome lattice,
and pyrochlore lattice. The one-electron part of this
Hubbard model has a flat band, which has no dispersion
in the whole k space [2,3]. This anomalous flat band comes
from quantum interference of the wave function, caused by
the geometric frustration. This model (Mielke model or
frustrated Hubbard model) has attracted much attention,
and many interesting magnetic and electronic properties are
theoretically proposed for this model, including rigorous
ferromagnetism, curious topological invariant, quantum
Hall effect, and superconductivity [1–6].
On the other hand, in the large on-site repulsion (U)

limit, we can derive the frustrated Heisenberg model as an
effective spin Hamiltonian [2]. Because of the strong
magnetic frustration, this model shows various nontrivial
magnetic properties [7]. In fact, it is experimentally known
that some pyrochlore oxides exhibit curious magnetic
properties, which include quantum spin liquid, spin ice,
and magnetic monopole [8–12].
Stimulated by the theoretical predictions, and by the

great success of the experimental findings of the frustrated
Heisenberg model, experimental exploration of materials
applicable to the Mielke model has also been carried out.
For example, a kagome lattice has been artificially realized
using a photonic crystal and a quantum wire [13–15]. There

is also an attempt to realize a Hubbard model on a kagome
lattice using a cold atom [16]. However, no bulk compound
described by the Mielke model has been found, and no
ferromagnetic ground state predicted by Mielke [1] has
been reported yet.
In this Letter we investigated the electronic structure of

pyrochlore oxides Sn2T2O7 (T ¼ Nb, Ta) for stoichiomet-
ric and hole-doped phases based on first-principles calcu-
lation. These compounds are given much attention as a
candidate of photocatalytic materials and transparent con-
ducting oxide [17–19]. Here we explain the crystal struc-
ture of pyrochlore oxides. The chemical composition is
written by A2B2O7, and is often written as A2B2O6O
because there are two oxygen sites. A2B2O6O consists
of a B2O6 unit formed by a corner-shared BO6 octahedra
and an A2O unit formed by corner-shared A4O tetrahedra.
When we extract the A site, they form a geometric
frustrated lattice (pyrochlore lattice). In the pyrochlore
oxide R2Ti2O7 (R is a rare-earth element), a magnetic
and localized R3þ ion occupies the A site, and other ions
form a closed shell and become inert. Thus, R2Ti2O7 is an
ideal system which realizes the Heisenberg model on a
geometric frustrated lattice and shows a rich magnetic
phase diagram as shown above.
We show that the valence band maximum (VBM) of

Sn2T2O7 has a characteristic quasi-flat band, and it can be
well described by a tight-binding model which includes
Sn-s and O0-p orbitals with nearest-neighbor hopping. This
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tight-binding model has a flat-band as in the Mielke model.
Combined with the result that the ferromagnetic ground
state survives when the flat band is slightly distorted
[20,21], we can expect that hole-doped Sn2T2O7 may have
a ferromagnetic ground state. In order to verify this idea, we
also performed a first-principles calculation including spin
degree of freedom for the hole-doped Sn2T2O7. As
expected, we obtained a ferromagnetic ground state for
them. Interestingly, the spin polarization is carried by Sn
and O atoms, which are usually nonmagnetic.
We have calculated the electronic structure of Sn2T2O7

(T ¼ Nb, Ta) from first principles for nondoped and hole-
doped cases. Details of the calculations are described
in Ref. [22].
Figure 1(a) shows the density of states (DOS) curve of

Sn2Nb2O7. As expected from the ionic configuration
Snþ2

2 Nbþ5
2 O−2

7 , it becomes an insulator. The magnitude
of the band gap (0.925 eV) is about a half of the
experimental value 2.3 eV [17], due to the underestimation
of the band gap by density-functional calculation. The DOS
curve of Sn2Ta2O7 (not shown) is essentially similar to that
of Sn2Nb2O7, except for the larger band gap 1.33 eV. The
experimental optical gap of Sn2Ta2O7 is 3.0 eV. Our
calculation results show good agreement with previous
works [17,27]. The VBM shows a very characteristic sharp
DOS feature just below the Fermi level (EF). The bands
with energy 0 to −3 eV are mainly composed of Sn-s and
O-p orbitals. We show the band dispersion of Sn2Nb2O7

near EF in Fig. 1(b). From this band dispersion, it is seen
that the sharp VBM feature shown in Fig. 1(a) is caused by

nearly degenerated two bands with narrow band width from
EF to −0.3 eV, where the maximum splitting is ∼0.04 eV
along theW-Q-L axis. Note that the band gap is an indirect
one for these two compounds (VBM is at the L point, while
the conduction band minimum is at the Γ point).
Since the flat-band system may cause interesting behav-

ior by the spin-orbit interaction (SOI) [3], we also per-
formed a band calculation with SOI [22]. Figure 1(c) shows
a zoom-up near the Γ point shown by the circle in Fig. 1(b).
Without SOI, the quasi-flat band touches the dispersive
band at this Γ point [28]. In Sn2T2O7, the state of this point
is specified by the threefold (sixfold if we include spin)
degenerated Γ25 irreducible representation without SOI.
When SOI is included, this state splits into twofold Γ7 and
fourfold Γ8 states as in Fig. 1(c) for Sn2Nb2O7 and Fig. 1(d)
for Sn2Ta2O7. Interestingly, in the case of Sn2Ta2O7, the
order of Γ7 and Γ8 is reversed and there is no band gap even
including SOI. This is in contrast to the case of a recently
predicted 2D kagome lattice formed by a metal-organic
framework (MOF) [29], which has a clear band gap at the Γ
point when including SOI. Hence, we can expect that the
topological property of the quasi-flat band in Sn2Ta2O7 is
different from that in Sn2Nb2O7 and 2D MOF.
Next, in order to grasp the electronic structure intuitively,

we fitted these bands with energy 0 to −3 eV by a tight-
bindingmodel including Sn-s andO-p orbitals with nearest-
neighbor transfer integrals [22], as shown in Fig. 1(e). Since
the primitive unit cell (PUC) contains two formula units [i.e.,
2ðSn2T2O7Þ in PUC], this model includes 4 Sn-s orbitals
and 6 O0-p orbitals (10-orbital model). Although this model
is quite simple, the band dispersion is well described except
the energy splitting in the L point. The VBMs with energy
0 eV ðα1; α2Þ are doubly degenerated and completely flat in
this model, as in the Mielke model. Interestingly, there are
other flat bands with energy∼ − 4.0 and∼ − 5.0 eV, which
mainly consist of O0-p orbitals. However, since these flat
bands are hidden by other bands (mainly O-p bands), they
may be difficult to observe. And since O0-p orbital energy is
not so different from O-p orbital energy, strong hybridiza-
tion with the dispersive O-p bands easily destroys the
flatness of the O0-p bands.
In contrast, since the orbital energy of Sn-s and O-p are

well separated, we can integrate out the O-p contribution
and construct a tight-binding model including only Sn-s
orbitals (4-orbital model) for the bands with energy 0 to
−3 eV. The obtained band dispersion is shown in Fig. 1(f).
This model is so simple that it contains only one parameter
t ¼ ðssσÞ, and is exactly the same as the model proposed by
Mielke [1]. Nevertheless, such a good agreement with the
ab initiobands is quite impressive. Interestingly,whenwego
to the 4-orbital model, the dispersion of the bands α1; α2 and
β except for the energy offset can be well described by
simply removing O0-p orbitals and keeping ϵs and ðssσÞ the
same. That is, the structure of these bands is hardly
dependent on ðspσÞ. However, for the lowest band γ in
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FIG. 1. (a) DOS curve and (b) energy dispersion of Sn2Nb2O7

from the first principles. As for the partial DOS, we only show Sn,
Nb, and O0 states for clarity. In (b), the thickness of the lines
represents the amount of the O0-p component. (c),(d) A zoom-up
view near Γ point shown by the circle in (b) for (c) Sn2Nb2O7 and
(d) Sn2Ta2O7. (e),(f) Energy dispersion of the (e) 10-orbital and
(f) 4-orbital tight-bindingmodel. (g)MLWF fitting with 4 orbitals.
The unit of energy is eV. EF is set as 0 eV or the VBM. The
parameters used in (e)–(g) are shown in Table I and Ref. [22].
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Fig. 1(f), agreement with ab initio calculation is worse
because ðspσÞ greatly affects the bandwidth. As for
Sn2Ta2O7, about a 10% increase of ðssσÞ can fit the Sn-s
bands well.
In order to obtain a more precise description of the bands

near EF, we constructed maximum localized Wannier
functions (MLWFs) using “Sn-s” orbitals [22]. We can
perfectly reproduce the original bands as shown in
Fig. 1(g), and the five largest parameters are shown in
Table I. We found that the transfer integral of the first
nearest-neighbor (t1) determines the overall shape of the
band dispersion, including the flat band. The t2–t4 gives
this flat band an energy dispersion with ∼0.3 eV, which is
seen in the ab initio band.
To our knowledge, these compounds are the first

examples in which flat bands derived from the frustrated
lattice have appeared near EF. Even though there are many
pyrochlore oxides, in most of them the A site is not relevant
to the electronic state around EF. Or in some compounds,
because the states other than s orbitals are involved, the
model with isotropic transfer integrals cannot be applied.
One exception is Tl2Ru2O7 [30], whose Tl-s orbital is
located near the VBM and its dispersion is similar to the
Sn-s quasi-flat band in Sn2T2O7. However, in Tl2Ru2O7,
Ru-d bands are partially occupied and they mask the
anomaly of the Tl-s quasi-flat band. In Sn2T2O7 there is
no such complication, and this is an ideal system to see the
flat band by a geometric frustrated lattice.
Next we discuss the hole-doping case. For a perfect flat-

band system, if this flat band is partially filled, then the
DOS at EF diverges. In this case, the system becomes
unstable against small perturbations, such as lattice dis-
tortion and spin polarization. In fact, Fujimoto shows that
charge order with lattice distortion causes a metal-insulator
transition for the Hubbard model on a 3D-pyrochlore lattice

when the (perfect) flat band is half filled [31]. However, in
Sn2Nb2O7, we did not observe such a lattice distortion by
x-ray diffraction experiment, at least at room temperature
[18]. This may be due to the finite bandwidth of the quasi-
flat band and/or due to the small carrier density of the
sample. Therefore, hereafter we do not consider the lattice
distortion, and focus on the spin polarization in hole-doped
Sn2Nb2O7.
In a perfect flat-band system it is rigorously shown that

when the flat band is half filled, it has one and only one
ferromagnetic ground state with any value ofU [1]. Even in
the system with quasi-flat bands, a numerical study has
shown that a ferromagnetic ground state is realized under
sufficiently large U [20]. The criterion of U that divides the
ferromagnetic and paramagnetic ground state is U ∼W,
where W denotes the width of the quasi-flat band. It is not
easy to estimate U on the Sn-s Wannier orbital quantita-
tively, but it is plausible to expect that U is larger thanW ∼
0.3 eV in this case. For example, it is considered that evenU
on the oxygen cite (Up) has 2–4 eV magnitude [32,33].
There is also an exact result that the ferromagnetic ground
state is stable for a slight bending of the flat band [21].
Next, we show the ab initio calculation results for the

hole-doped Sn2T2O7. We tried hole doping in two ways.
First, replace O with N. Second, replace Nb with a
hypothetical atom Nz, which has a fractional number of
electrons and nuclear charge [virtual crystal approximation
(VCA)]. This VCA models the substitution of Nb5þ by
Zr4þ, but the substitution of Nb5þ by excess Sn4þ may have
similar hole-doping effect [18].
Figure 2 shows the band dispersion of Sn2Ta2O6N.

There is an exchange splitting of the up-spin and down-spin
valence band. All the extra hole carriers occupy the down-
spin band; i.e., this system is half-metallic. Therefore,
the total magnetic moment becomes M ¼ 2.00μB. As
described above, since the structure of this band hardly
depends on ðspσÞ, even if O0 is replaced by N, the bandTABLE I. Tight-binding parameters for several models for

Sn2Nb2O7. (a) 10-orbital and 4-orbital models including only
nearest-neighbor hopping. As for the 4-orbital model, we simply
omit O0-p orbitals from the 10-orbital model and adjust the offset
by modifying ϵs. (b) 4-orbitals MLWF model. The detail of the
notation is shown in Ref. [22]. All the units of energy are eV.

(a) 10-orbital 4-orbital

ϵs −1.4 −0.600
ϵp −3.9 � � �

ðssσÞ −0.28 −0.28
ðspσÞ 1.12 � � �

(b) Rμ
i −Rν

j ði; jÞ ϵ, t Deg Distance

ϵ (0,0,0) (1,1) −0.7037 ×1 On site
t1 (0,0,0) (1,2) −0.2764 ×6 0.3536a
t2 ð−1; 1; 0Þ (1,1) −0.0366 ×6 0.7071a
t3 (1,0,0) (1,1) 0.0153 ×6 0.7071a
t4 ð−1; 0; 1Þ (1,2) 0.0130 ×6 0.6123a FIG. 2. Energy dispersion of Sn2Ta2O6N for (a) up spin and

(b) down spin.
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shape hardly changes. However, since the energy of the
N-p orbital is shallower than that of the O0-p orbital, the
band gap becomes smaller. As for Sr2Nb2O6N, the band
gap collapses for the down-spin band (not shown), but still
has M ¼ 2.00μB.
Also in the case of VCA, the shape of the valence band

hardly changes when δ (the number of holes per Nb) is
smaller than 0.5. When we substitute Nb to Nz, the nuclear
charge decreases and the energy level of the conduction
band becomes shallower. However, for the valence band
there is only little change from the original one. As a result,
the band gap increases.
The dependence of M on δ in hole-doped Sn2Nb2O7 is

shown in Fig. 3. The number of holes is controlled by
VCA. First, we focus on the case where u is fixed at 0.4349,
which is the optimized value for the pristine Sn2Nb2O7

(filled squares). Although M initially increases in propor-
tion to δ, it decreases conversely when δ exceeds 0.5 and
becomes zero with δ ¼ 1. The point δ ¼ 0.5 is just where
the quasi-flat band is half filled. This behavior looks like
the Slater-Pauling curve [34,35], which is universally seen
in various ferromagnetic alloys. The hole-poor side of the
Slater-Pauling curve can be explained by a simple rigid
band model. That is, since holes are present only in the
down-spin band in this region, increasing electrons fill the
holes and decrease M. Since the PUC of Sn2Nb2O7

contains four Nb atoms, the “Slater-Pauling line” becomes
M ¼ 4δ. We see that our calculated MðδÞ well agrees with
M ¼ 4δ. We also plotted M for Sn2Nb2O6N (T ¼ Nb, Ta)
by a filled circle, and obtained the full moment M ¼
2.00μB as shown above.
If the valence band merely consists of the quasi-flat band,

the M versus δ plot will be symmetric for the line δ ¼ 0.5.
We show the line M ¼ 4ð1 − δÞ in Fig. 3. However, the
obtained MðδÞ is asymmetric for the line δ ¼ 0.5. We may
ascribe this asymmetry to the following reasons. First, there
are dispersive bands below the quasi-flat band,which breaks
the electron-hole symmetry assumed above. Second, the
valence band feels the change of the conduction band by
VCA through hybridization. In particular,W increaseswhen

we increase δ. As for Sn2Nb2O7 and Sn2Nb2O6N (B site is
occupied by Nb), W is about 0.3 eV. However, W is about
0.5 eV for Sn2Nz2O7 with δ ¼ 0.5. Finally, the dispersive
band [with energy −2.3– − 0.6 eV in Fig. 1(b)] is merged
into the O-p bands when we increase δ. As for δ > 0.6, the
tight-binding picture shown in Figs. 1(e) and 1(f) may no
longer be appropriate.
The magnitude of M also depends on the position of O

atom u. The M versus δ plot obtained when u is optimized
for each δ is also shown in Fig. 3 (open triangles). Although
the Sn2O network itself is not distorted, the shift of the O
atom affects the effective transfer between Sn, then changes
W, and eventually changes M. Therefore, when u is
optimized for each δ, M decreases faster with increasing
δ as compared with the fixed u case.
Our calculation is based on the Stoner model, which

tends to overestimate the ferromagnetism. It is a future task
to perform a more precise numerical many-body calcula-
tion using the model in Fig. 1(e) or 1(f) and appropriate
Hubbard U. As for δ ¼ 0.5, we may also have to take care
of the possible charge order [31]. Nevertheless, our results
suggest that Sn2T2O7 is a promising candidate for realizing
the flat-band electronic state. We already have succeeded in
synthesizing hole-doped Sn2ðNb;TaÞ2O7 samples [18,19].
However, the bands coming from the pyrochlore lattice,
i.e., α, β, and γ bands in Fig. 1(e) are not observed in the
photoemission spectra of these samples. Since other bands
are clearly observed, we attribute this absence of the flat
band to the deficiency of Sn atoms (∼10%) and O0 atoms
(∼23%), which are considered to be very sensitive to the
electronic structure near the VBM. Some numerical works
suggest that the flat-band state is sensitive to disorder
[36,37], though the calculation result for the 3D-pyrochlore
lattice has not been reported yet.
Finally, we comment on the possibility that Sn2Nb2O7

can behave like a magnetic 3D topological insulator. In the
above discussion we show that the quasi-flat-band nature of
Sn2Nb2O7 is similar to 2D MOF [29]. In either case, the
band gap opens by SOI and ferromagnetism is induced by
some carrier doping. In this sense Sn2Nb2O7 can be
regarded as a 3D counterpart of the 2D MOF, in which
quasi-flat band, ferromagnetism, and SOI naturally coexist.
As for realizing the long-range magnetic order, a 3D
material is apparently more suitable than a 2D material
due to less fluctuation. In 2D MOF the quasi-flat band has
the Chern number c ¼ 1, which means that this band is
topologically nontrivial [29]. It is also discussed that the
fractional quantum Hall effect can occur in a 2D flat-band
system [38–40]. The 3D counterpart material will pave
the road to explore novel topological order. We further
emphasize that Sn2Ta2O7 belongs to a different class
from Sn2Nb2O7 because the former does not have
a band gap when including SOI. The mixed compound
Sn2ðTa;NbÞ2O7 has the possibility to show a topological
phase transition, as seen in ðBi; SbÞ2Te3 [41].

δ

δδ

FIG. 3. Calculated magnetic moment M of hole-doped
Sn2Nb2O7 as a function of the doping level δ.
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In summary, we found that the top of the valence band
of Sn2T2O7 (T ¼ Nb, Ta) has quasi-flat-band nature. This
anomalous band dispersion comes from the geometric
frustration lattice of the Sn2O network. Our first-principles
calculation shows that various hole doping can induce
ferromagnetism with nearly 100% spin polarization, and
the magnetic moment mostly comes from Sn-s and O-p
orbitals. These compounds are not only candidates for
ferromagnets without magnetic elements, but also provide
an experimental platform for flat band models showing a
wide range of physical properties.
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