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Pearling instabilities of slender viscoelastic threads have received much attention, but remain
incompletely understood. We study the instabilities in polymer solutions subject to uniaxial elongational
flow. Two distinctly different instabilites are observed: beads on a string and blistering. The beads-on-
a-string structure arises from a capillary instability whereas the blistering instability has a different origin:
it is due to a coupling between stress and polymer concentration. By varying the temperature to change the
solution properties we elucidate the interplay between flow and phase separation.
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Pearling instabilites have been much studied; in the
context of cell membranes they are associated with cell
shape and cell division [1] and for artificial membranes,
curvature-induced pearling instabilities have been associated
with membrane heterogeneity and local phase separations
[2]. Such pearling instabilities generally result from a
complicated interplay between bulk and surface stresses,
which are in some cases actively driven; therefore a complete
understanding is still lacking. Amuch simpler model system
that exhibits strikingly similar pearling instabilities is a
polymer solution. Understanding and controlling the rheol-
ogy of such solutions of especially high-molecular-weight
polymers is crucial in numerous applications such as flow
control in microdevices [3], fluidizing paint or concrete,
and drop size control in pesticide spraying or ink jet printing
[4–6]. These applications rely for a major part on the
spectacular changes in extensional rheology that arise from
the presence of small amounts of high-molecular-weight
polymers. The generic way of investigating extensional
viscosity is to look at the ensuing rupture of liquid columns
[7–11]. Making a drop from an orifice leads to the formation
of a slender cylindrical thread with an initially uniform
thickness. In many cases the column destabilizes and its
thickness becomes nonuniform; this is usually referred to as
beads on a string (BOAS) [10,12–15], a droplike pattern
created on a thin column of viscoelastic liquid. At the final
stages of thinning, another pattern is sometimes observed
[16–18] that is superficially similar, characterized by small
droplets that form in between the initially formed beads on a
string (blistering).
These thread instabilities received a lot of attention also

because satellite beads are often undesired [8,12,16,19,20].
De Olivera and McKinley propose that a competition
between elastic, capillary, and inertial forces leads to the
formation of the beads-on-a-string structure, but that such a
state is inherently unstable leading to successive instabilities
in the necks connecting the beads and the ligaments [17].

The precise mechanism of both the primary and the secon-
dary instability is however not understood. Clearly, the
elastic forces generated by the stretching of the polymers
impede the finite-time singularity that is present for
Newtonian liquids [21]; however also for Newtonian fluids
satellite drops are observed, so that the instabilitymechanism
may be independent from the elastic forces [22,23]. The
BOAS pattern is clearly not a simple Rayleigh-Plateau-
like instability since the beads are very far apart [12]. The
blistering instability could be a secondary instability leading
to smaller beads on a thinner string; in this case, the
mechanism should be similar to that of BOAS instability.
However, recent theory [20] suggests a completely different
mechanism based on a dynamical phase separation due to the
coupling between local stress and local concentration in the
liquid thread that remains to be tested experimentally.
Herewe show that indeed the origin of the two instabilities

is very different: the BOAS structure is controlled by an
interplay between capillary and elastic forces, and induced
by local symmetry breaking in the fluid neck. On the other
hand, the blistering instability is due to a dynamical phase
separation that takes place in the elongational flow. The latter
is concluded from temperature-controlled experiments in
which we compare two types of polymers in solution, one of
which shows a phase separation at high temperatures [24,25].
Blistering is the dynamical precursor of the separation that
takes place around the phase-separation temperature. The
temperature of dynamical phase separation scales with the
strain rate follows froma simple argument for the coupling of
the flow with the phase separation. The control of temper-
ature during drop formation consequently allows us to tune
the different instabilities of a viscoelastic thread of polymer
solution.
We study the extensional thinning and destabilization of

filaments of long-chain polymer solutions in water at
different concentrations. The experiments are performed
with polyethylene oxide (PEO) of a molecular weight (Mw)
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of 4� 2 × 106 gmol−1 [26] at concentrations 0.7 ≤
c=c� ≤ 7 and polyacrylamide (PAM) at Mw ¼ 15� 6 ×
106 gmol−1 [27] at concentrations 7 ≤ c=c� ≤ 13, both
from Sigma-Aldrich (purity ¼ 0.98). We use these because
the ability to finely tune concentrations allows us to have
comparable Zimm relaxation times λZ between the two
polymers, and hence very similar flow properties. High
molecular weight polymers invariably exhibit an important
polydispersity, which may result in multiple time scales;
however [12] showed that a single characteristic time is
sufficient to describe the polymer flow dynamics. The
Zimm time is calculated in the standard way: λZ ≅
½f0.422½η�MwηsðTÞg=ðNakBTÞ� where [η] is the intrinsic
viscosity of the polymer solutions, NA Avogadro’s number,
and kB Boltzmann’s constant. ηs is the viscosity of the
solvent (with an exponential temperature dependence). A
syringe pump supplies the polymer solutions to the needle
tip (inner diameter D0 ¼ 2 mm); a high-speed camera with
a microscope lens records the dynamics at 10,000 frames
per second (see Supplemental Material Fig. 1, [28]). At
room temperature, PEO and PAM show an initial thinning
similar to that of a Newtonian fluid. Subsequently a very
long and slender cylindrical filament is formed; in this
elastocapillary thinning regime the dynamics slows down
dramatically and follows Dmin ∝ e−t=3λ0 with λ0 being the
longest relaxation time of the polymer solution [30]. At
T ¼ 20 °C, PEO and PAM exhibit similar thinning dynam-
ics; the liquid columns are very stable and it is only at very
late times that blistering appears (Supplemental Material
Fig. 2). Quantitatively, the thinning rate and hence the

elongational viscosity is the same: we find an almost
identical relaxation time: λ0;PEO ¼ 3.1 × 10−1 s and
λ0;PAM ¼ 2.9 × 10−2 s. However, at T ¼ 100 °C (the sol-
ution does not boil because of boiling point elevation), PEO
and PAM solutions show pronounced differences (Fig. 1):
the latter shows dynamics similar to that at room temper-
ature, with only a change due to the expected T dependence
of the viscoelastic time scale. Only very close to filament
breakup (t ¼ 100 ms), formation of small blistering struc-
tures are observed. In contrast, PEO solutions are strongly
affected by temperature and their dynamics changes quali-
tatively. There is almost immediate formation of a satellite
bead [12–14] connected by two thin cylindrical threads:
this is the BOAS structure (1). At later times, the filament
rapidly becomes unstable (t ¼ 50 ms) to form a strongly
nonuniform blistering pattern (2) [16,17,20].
To gain insight into these surprising differences, Fig. 2

shows the T dependence of the relaxation times. For PAM
this shows the predicted temperature dependence of the
Zimm time: λ0;PAM ∼ λZ [see Fig. 2(c)]. For PEO, how-
ever, the relaxation time deviates strongly beyond
T ∼ 80 °C [Fig. 2(d)]: it becomes almost an order of
magnitude smaller, and the deviation becomes more
pronounced at high T; the strong T dependence is well
described by λ0;PEO ∼ λp ∝ e1=T (Supplemental Material
Fig. 4). Quantitative criteria for the formation of the
satellite bead and the blistering structures are as follows.
Reference [12] suggests that bead formation is due to a
symmetry breaking in the filament: when necking occurs
in the filament (usually close to the drop or the orifice),

FIG. 1. Photographs of the breakup neck dynamics of PAM (upper panel) and PEO (lower panel) solutions at T ¼ 100 °C. At room
temperature, both of these polymer solutions have a similar relaxation time λ0. At higher temperatures, the breakup dynamics of
PEO solution is modified due to phase separation. This leads to the formation of a satellite bead (1) at t ¼ 30ms, followed by the
formation of a nonuniform blistering pattern (2) at t ¼ 50ms that appears sooner (or, e.g., at a larger neck diameter) than for the PAM
solution. A closeup view of regime (2) is shown in the red frame.
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the filament produces one or several beads. The symmetry
breaking occurs for sufficiently strong deformations of the
liquid filament. Comparing the experimental growth rate
ωR of the Rayleigh instability to λ0, it follows that for
PAM, the Rayleigh instability is simply not fast enough to
produce a symmetry breaking and hence BOAS; Fig. 3(a)
shows that ωR > λ−10 for T ≤ 90 °C. For the last data point
at the highest temperature we do not observe satellite
beads and conclude that the two rates coincide to within
the error. PEO shows satellite beads because the Rayleigh
instability is fast enough, Fig. 3(b); this happens because
of the strong temperature dependence of the relaxation
time: around T ∼ 50 °C, ωR < λ−10 . This agrees quantita-
tively with the boundary between BOAS and no BOAS
(Supplemental Material Fig. 5) and quantitatively accounts
for the BOAS instability.
For the blistering, Figs. 3(c) and 3(d) show the critical

diameter Dc at which the blistering appears. At room
temperature, blistering starts for PEO at the same critical
diameter as for PAM. However, as the temperature increases
for PEO, blistering appears for increasingly larger values
of Dc, which corresponds to a smaller capillary stress: the

instability occurs much more readily. Quantitatively, Eggers
[20] predicts that the coupling between polymer concen-
tration and elastic stress sets this critical diameter, evaluated
as Dc ¼

ffiffiffiffiffiffiffiffi

Δ=_ϵ
p ¼ ffiffiffiffiffiffiffiffiffiffi

3Δλ0
p

, with _ϵ being the stretching rate
defined as _ϵ ¼ 1=3λ0 (see Supplemental Material note 1 and
Supplemental Material Fig. 3); Δ ¼ kBT=6πηsðTÞa is the
diffusion coefficient with a being the polymer radius, with
a temperature dependence that is the exact inverse of the
Zimm equation. Taken together, this accounts for a temper-
ature independent critical diameter Dc ¼

ffiffiffiffiffiffiffiffi

Δ=_ϵ
p

. Hence, no
temperature dependence is expected for Dc for PAM: the
measured relaxation time has the same temperature depend-
ence as Δ [Fig. 3(c)]. However for PEO solution the
relaxation time strongly varies, and the temperature depend-
ence is therefore expected to be Dc ∝

ffiffiffiffiffiffiffiffi

Δλp
p

∝
ffiffiffiffi

T
p

. This
agrees with the experimental data in Fig. 3(d): this quanti-
tatively accounts for the blistering instability.
The main difference between PAM and PEO solutions

is that the latter exhibit a macroscopic phase separation
between a polymer-rich phase and a water-rich phase at

(a) (b)

(c) (d)

FIG. 2. Effect of temperature on the thinning dynamics.
Dmin=D0 is plotted as a function of time t for the case of
(a) PAM and (b) PEO solutions. The relaxation times λ0=λz of
PAM (c) and PEO (d) of different concentrations c=c� as a
function of temperature T are deduced from the thinning curves.
In the case of PEO solutions, the deviation becomes important for
temperatures higher than 80 °C. The grey area shows the range of
temperatures where the phase separation of PEO solution occurs
at rest.

(a) (b)

(c) (d)

FIG. 3. BOAS is observed when the growth rate of the Rayleigh
instability ωR is smaller than the characteristic time of the
polymer solution λ−10 . Domain A (blue) shows ωR > λ−10 where
no bead is observed. Domain B (red) is ωR < λ−10 , where a bead is
formed on the filament. For PAM (a), no BOAS is observed for a
wide range of temperatures, while PEO (b) shows a transition
between domains A ↦ B at T ∼ 50 °C, giving rise to the
formation of a bead (see Fig. 1, lower panel). Blistering appears
for a critical neck diameterDc. For PAM (c), the temperature does
not affect the critical diameter, but for PEO (d), blistering is
observed for a larger neck diameter when T increases.
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high T [31]. We determined the phase-separation temper-
atures visually by placing the solution in an oven and by
slowly increasing the temperature (1 °C=day) until phase
separation is observed (see Supplemental Material Fig. 6):
Tsep ¼ 120 °C for 0.6 ≤ c=c� ≤ 1.4 and Tsep ¼ 110 °C for
the higher concentration (c=c� ¼ 7), in agreement with
[31]. The fact that important deviations in the thinning rate
and instability formation are only observed close to the
phase-separation temperature suggests that the coupling
between the flow and the phase separation needs to be
taken into account. There has been a massive amount of
work on flow-induced phase separations in shear flow
[32,33]; we borrow these arguments here and apply them to
our elongational flow. Perhaps the simplest possible argu-
ment is that when polymer chains are deformed in flow,
elastic energy is stored in those degrees of freedom, which
increases the free energy of the homogeneous state. If there
is no elastic energy stored in the phase-separated state, this
naturally shifts the phase-separation temperature [34,35] by

jΔTj ∼ ðTθ − TcÞ
c
c�

γ2;

where Tθ is the θ temperature [31], Tc the phase-separation
temperature determined as mentioned above, c the polymer
concentration, and c� the overlap volume fraction. The
deformation γ is the product of the deformation rate and the
relaxation time of the polymer solution. The two lowest
points seem to be slightly off the proposed scaling; perhaps
this is due to them not yet being in the scaling regime.
To compare with experiment, we quantify the difference in
experimental relaxation time compared to the relaxation
time predicted by Zimm (λZ). This difference can be
translated into a shift in phase-separation temperature by
simply assuming that the measured relaxation time in the
flow corresponds to the Zimm relaxation time of the
quiescent solution at a different temperature. The resulting
temperature shift ΔT=ðTθ − TcÞðc=c�Þ is plotted in Fig. 4
as a function of the deformation γ ¼ _ϵλZ, and exhibits the
proposed scaling.

This then explains the much earlier formation of the
blistering instability for PEO compared to PAM: the phase
separation induced by the joint effects of temperature and
extensional flow introduces inhomogeneities of polymer
concentration in the polymer thread, thus giving rise to the
formation of multiple beads on the polymer thread. The
time scale of the instability was reported in [16]; the authors
reported an inverse time scale ω−1 ≈ 10 ms. Eggers’ theory
[20] that we use predicts a time scale for the phase
separation ω−1 ≈D2

c=Δ; putting in values we also find
≈10 ms, so the two estimates agree. Our results also
provide an explanation of earlier experiments [16,18] that
showed that the thread rapidly becomes solid, implying that
it is rich in polymer, whereas the blisters remain liquid and
therefore are poor in polymer.
Because the temperature strongly affects the relaxation

time of the PEO solution, it affects the BOAS instability
also. Thus, BOAS always happens if the inverse of the
relaxation time is large enough; this can also be achieved,
e.g., by decreasing the polymer molecular weight or the
concentration and is independent of any phase separation.
In conclusion, we studied the pearling instabilities of

polymer threads for different polymers as a function of
temperature. This control parameter allows us to elucidate
the interplay between flow and phase separation. We show
how the modified relaxation time of the polymer solution
close to phase separation affects the instabilities. This is the
bulk counterpart of the surface curvature induced insta-
bilities in (artificial) membranes. For the polymer threads,
our quantitative findings agree with the idea that BOAS and
blistering instabilities have a very different physical origin,
in spite of the fact that their manifestation—small drops on
a thin filament—appears similar. Temperature is therefore
an interesting parameter to control the appearance of
different instabilities by controlling the interplay between
the hydrodynamic, capillary, and elastic forces on the one
hand, and phase separation on the other hand. These
findings are potentially applicable to numerous industrial
applications involving polymer spraying where the jets can
now be tuned on demand.
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