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We point out the existence of a new general relativistic contribution to the perihelion advance of Mercury
that, while smaller than the contributions arising from the solar quadrupole moment and angular
momentum, is 100 times larger than the second-post-Newtonian contribution. It arises in part from
relativistic “crossterms” in the post-Newtonian equations of motion between Mercury’s interaction with the
Sun and with the other planets, and in part from an interaction between Mercury’s motion and the
gravitomagnetic field of the moving planets. At a few parts in 106 of the leading general relativistic
precession of 42.98 arcseconds per century, these effects are likely to be detectable by the BepiColombo
mission to place and track two orbiters around Mercury, scheduled for launch around 2018.
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Introduction.—The perihelion advance of Mercury is
one of the iconic tests of Einstein’s general theory of
relativity. The story began as a crisis of 19th-century
Newtonian dynamics, when Le Verrier pointed out in
1859 [1] that a tally of the perturbations of Mercury’s
orbit induced by the Newtonian gravitational attraction of
the other planets fell short of accounting for the observed
advance of the perihelion by an amount that was 43 arc-
seconds per century (here we use the modern value).
Notwithstanding imaginative attempts to resolve this
discrepancy by postulating an intramercurial planet
(dubbed “Vulcan”) or by tweaking the Newtonian inverse
square law, it was still an unsolved problem when Einstein
began his quest for relativistic theory of gravity in 1907
[2]. In fact, he used the perihelion advance problem as a
filter for his various preliminary theories. Although he
was already becoming dissatisfied with the theoretical
properties of the entwurf, or “draft” theory that he had
developed in 1912 with Marcel Grossmann, he finally
rejected it because it failed to give the right answer for the
Mercury discrepancy. In November 1915, when every-
thing seemed to be falling into place theoretically for his
latest attempt, the tipping point occurred when he saw that
the theory gave the correct value for the missing peri-
helion advance. He later wrote that this discovery gave
him “palpitations of the heart” (see, for example Sec. 14c
of [3]).
The perihelion advance became a “hot topic” again in the

1960s, when Dicke and collaborators claimed to have
shown, through observations of the shape of the solar
disk, that the Sun was sufficiently oblate that the
Newtonian contributions of the modified solar potential
would contribute four arcseconds per century (as/cy) to the
perihelion advance, thus invalidating general relativity, and

supporting Brans and Dicke’s recent scalar-tensor theory of
gravity, which predicted only about 39 as/cy [4].
Since the 1970s the perihelion advance has entered the

pantheon of high-precision confirmations of general rela-
tivity. This was made possible by developments on many
fronts: high-precision radar tracking of planets and space-
craft; improvements in our knowledge of planetary and
asteroid masses; precise measurements of the Earth-Moon
orbit using lunar laser ranging; development of computer
codes for obtaining precise orbits of the planets, major
asteroids, and spacecraft; and helioseismology, which
yielded credible values for the solar quadrupole moment.
Another development was the adoption of the post-

Newtonian limit of general relativity and later of the
parametrized post-Newtonian (PPN) formalism [5–8] as
the foundation for analyzing solar system data [9,10]. The
PPN formalism provides, among other tools, a set of
N-body equations of motion, valid to the first post-
Newtonian (PN) order [Oðv=cÞ2 beyond Newtonian
theory], expressed in terms of a set of dimensionless
parameters, γ; β;… whose values depend on the theory
of gravity being used. This made it possible to analyze all
available solar system data, both historical and current, in a
uniform manner. Through such estimation procedures as
least squares, one could obtain estimates for the values and
uncertainties in the parameters of the problem, such as
masses and orbit elements of planets, the quadrupole
moment of the Sun, and relativistic parameters such as γ
and β, and to understand correlations among them. The
main improvements to the estimates of γ came from data in
which the tracking signal passes close to the Sun, thus
experiencing the Shapiro time delay, which depends on
ð1þ γÞ=2. Such was the case for analyses that included
data from the 2003 cruise phase of the Cassini mission to
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Saturn, which yielded γ−1¼ð2.1�2.3Þ×10−5 [11]. The
parameter β is sensitive to the perihelion advance, which
depends on ð2þ2γ−βÞ=3, and to the “Nordtvedt” effect in
lunar laser ranging, which depends primarily on 4β−γ−3.
Recall that γ ¼ β ¼ 1 in general relativity (GR).
A major advance in measuring the parameters of the

perihelion advance was made by exploiting Mercury
MESSENGER. In 2011, MESSENGER became the first
spacecraft to orbit Mercury, and range and Doppler
measurements of the orbiter were made until the spacecraft
ended its mission in 2015 with a controlled crash on the
surface of Mercury. By 2013, MESSENGER data had
already led to dramatically improved knowledge of
Mercury’s orbit. Analyses of all the available data yielded
bounds on γ and β given by γ − 1 ¼ ð−0.3� 2.5Þ × 10−5

and β − 1 ¼ ð0.2� 2.5Þ × 10−5 [12–14]. The analyses also
yielded an estimate for the solar quadrupole moment
J2 ¼ ð2.4� 0.2Þ × 10−7, consistent with the results from
helioseismology. More recent analyses yielded comparable
results [15,16].
Improved measurements of β, down to the level of parts

per million [17,18], may be possible using data from the
joint European-Japanese BepiColombo project to place two
orbiters around Mercury [19], scheduled for launch in late
2018. The purpose of this Letter is to point out that, at the
level of parts per million, there is a new general relativistic
effect on Mercury’s perihelion that has not been calculated
explicitly heretofore, although it is implicit in the PPN
N-body equations of motion mentioned above. This is the
effect of post-Newtonian “cross terms” in the equations of
motion [20].
To understand PN cross terms, consider a hierarchical

triple system, consisting of an inner binary system (the Sun
and Mercury in this case) and a distant third body. At
Newtonian order, the relative acceleration between
Mercury and the Sun has terms of order Gm=r2 and
Gm3r=R3, where m and r are the mass and separation
of the Sun-Mercury system, and where we have expanded
the effect of the external body at distance R and with mass
m3 to only quadrupole order. In the post-Newtonian
approximation, each of these terms comes from a potential
Gm=r and Gm3r2=R3, which then leads to a dimensionless
relativistic correction factor Gm=rc2 and Gm3r2=R3c2.
Here G and c are the gravitational constant and the speed
of light, respectively. Thus, in addition to the two
Newtonian acceleration terms and the usual PN corrections
to the acceleration within the Sun-Mercury system, of order
G2m2=r3c2, we also include cross terms between PN and
third-body effects, of the form ðGm=r2Þ × ðGm3r2=R3c2Þ
or ðGm3r=R3Þ × ðGm=rc2Þ, both of which scale as
G2mm3=R3c2. Thus we are including the relativistic effect
of the third body’s potential on the Newtonian acceleration
due to the Sun, and the relativistic effect of the Sun’s
potential on the perturbing acceleration due to the third
body. Relative to the dominant Newtonian acceleration by

the Sun, these cross terms have a dimensionless scale given
by Gm3r2=R3c2 ∼ ½ðm3=mÞðr=RÞ3�½Gm=rc2�. Thus we
would expect on dimensional grounds that, if these
cross-term perturbations induce a perihelion advance for
Mercury, it would be of order Gm=rc2 ∼ 10−7 times the
Newtonian advance induced by the other planets. But this
advance is ∼530 as=cy, an order of magnitude larger than
the standard relativistic advance. Thus we might expect the
contribution of PN cross terms to be at the level of parts per
million of the GR effect, exactly the regime that will be
explored by BepiColombo.
Another PN cross term that turns out to be relevant is an

interaction between the velocity v of Mercury and the
“gravitomagnetic (GM) field” generated by the “mass
current” of the moving third body. This interaction is
proportional to Gm3V3v=c2R2. With v ∼ ðGm=rÞ1=2 and
V3 ∼ ðGm=RÞ1=2, this scales as ½ðm3=mÞðr=RÞ5=2�½Gm=rc2�
relative to the Newtonian solar acceleration, and could lead
to a contribution to the perihelion advance of compa-
rable size.
A detailed calculation, to be described in the next section,

confirms these expectations. For a third body in a circular
orbit that is coplanar with the Sun-Mercury system, the
advance per orbit of the perihelion of Mercury is given by

Δϖ ¼ 6πGm
c2p

þ 3π
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where ϖ is the perihelion measured from a fixed reference
direction, a and e are the semimajor axis and eccentricity of
Mercury’s orbit, and p ¼ að1 − e2Þ. The first term is the
standard general relativistic precession, the second is the
Newtonian precession induced by the third body, and
the third is the cross-term effect arising from the coupling
between the solar and third-body potentials. The final term
in Eq. (1) comes from the gravitomagnetic cross term and
actually causes a precession of the node Ω, which must be
included in the total orbit element ϖ (only the sum ϖ ¼
ωþ Ω is relevant for coplanar orbits). This term has the
same origin as the de Sitter precession of the node of the
Earth-Moon system induced by the Sun, which has been
measured using lunar laser ranging.
Since we worked to linear order in the perturbations due

to the third body, we can simply sum over all the other
planets, to obtain

Δϖ ¼ 6πGm
c2p

þ 3π

2

X
A

mA

m

�
a
RA

�
3

ð1 − e2Þ1=2

×

�
1þ 1

2

Gm
c2a

28þ 47e2

ð1 − e2Þ2
�
þ 4π

X
A

GmA

c2a

�
a
RA

�
5=2

:

ð2Þ

PHYSICAL REVIEW LETTERS 120, 191101 (2018)

191101-2



Inserting the relevant values for Mercury and the other
planets out to Saturn,weobtain42.98 as=cy for theGR term,
384 as=cy for the planetary perturbation coefficient, and
4.2 × 10−7 for the correction term inside the square brackets.
Thus the contribution of the cross-term perturbation at
quadrupole order is 1.6 × 10−4 as=cy, or 3.7 × 10−6 of
themainGRprecession.Notice that the planetary coefficient
is smaller than the full planetary effect of 530 as=cy because
our quadrupole approximation underestimates the contribu-
tions fromVenus andEarth. The gravitomagnetic or de Sitter
term contributes 6.4×10−5 as=cy or 1.5 × 10−6 of the main
GR precession.
In principle, the calculations described here could be

carried to higher order in the expansion of the perturbing
fields of the planets.
Table I lists the important subdominant contributions to

Mercury’s perihelion advance. The solar oblateness con-
tribution assumes a value of J2 given by that inferred from
helioseismology or from analyses of MESSENGER data.
The uncertainty in J2 is around 10%. The contribution of
the dragging of inertial frames induced by the solar angular
momentum J is at the parts in 105 level, while the leading
cross-term effects are at parts in 106. The second post-
Newtonian (2PN) contribution is significantly smaller, at
parts in 108.
Calculations.—We begin with the PN N-body equations

of motion in general relativity, as displayed in Eq. (9.127)
of [21], Eq. (6.78) of [7], or Eq. (6.79) of [8] (with PPN
parameters chosen to be those of GR), truncated to three
bodies. We further restrict our discussion to a heirarchical
triple system consisting of an inner binary with separation
vector x12 and a distant third body of mass m3 at a distance
R ≫ r. The inner binary consists of a test mass (body 1)
orbiting a central object (body 2) of massm. Thus the outer
body’s orbit is unaffected by the test body, and we choose
that orbit to be circular and coplanar with the inner orbit.
We expand the vector x13 that joins the third body to the test
mass in powers of r=R, with r¼jx12j, X¼x23 and R ¼ jXj,
retaining terms of order Gm3r=R3 in the Newtonian
acceleration, corresponding to quadrupole order, and keep-
ing terms that scale as ½G2m3m=c2R3�ðr=RÞn in the PN
accelerations for any n ≤ 0. We exclude PN cross terms
with n > 0, as these will be progressively smaller than the
terms being kept. We also keep the conventional PN terms

generated by the central mass, which scale as G2m2=c2r3.
The resulting equation of motion has the form

a ¼ −
Gmn
r2

−
Gm3r
R3

½n − 3ðn · NÞN� þ 1

c2
½a�Binary

þ 1
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�
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�
; ð3Þ

where N ¼ X=R, n ¼ x12=r, and
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where _r ¼ n · v. There are additional PN cross terms that
scale with the values n ¼ −5=2, −2 and −1; these turn out
to have no secular effect on the orbit elements of the inner
binary, so we do not display them (see Eq. (4.7b) of [20] for
the full set of terms).
We now treat all but the Newtonian two-body accel-

eration as perturbations, and define the osculating orbit of
the inner binary by (see Secs. 3.2 and 3.3 of [21] for details)

r≡ pð1þ e cos fÞ−1; v≡ _rnþ
ffiffiffiffiffiffiffiffiffiffiffi
Gmp

p
r

λ;

n≡ cosðϖ þ fÞeX þ sinðϖ þ fÞeY;

λ≡ ∂n=∂f; df
dt

≡
ffiffiffiffiffiffiffiffiffiffiffi
Gmp

p
r2

−
dϖ
dt

; ð5Þ

where f is the true anomaly and eX and eY are fixed
reference directions. We then find the components of the
perturbing accelerations along the n, λ and ĥ ¼ n × λ
directions, and insert them into the Lagrange planetary
equations [20], which give equations for the evolution of
the orbit elements Xα of the general form

dXα

dt
¼ Qα(XβðtÞ; t): ð6Þ

We then integrate these equations to obtain secular varia-
tions of the orbital elements.
However, in order to find the secular changes in the orbit

elements induced by the cross terms in the equations of
motion, we must carefully incorporate higher-order effects
in the perturbation equations themselves. First, the orbit
elements p, e and ϖ vary periodically during the orbit.
Thus the PN-induced variations in these elements must be
inserted back into the Newtonian perturbation terms gen-
erated by the third body, and the third-body induced

TABLE I. Contributions to Mercury’s perihelion advance.

Effect Formula (rad/orbit)
Value relative

to GR

Solar oblateness 3πJ2ðR=pÞ3 6.5 × 10−4

Frame dragging −8πGJ=c2ðGmp3Þ1=2 4.7 × 10−5

PN cross term see Eq. (2) 3.7 × 10−6

GM/de Sitter see Eq. (2) 1.5 × 10−6

2PN −6πðGm=2c2pÞ2ð10 − e2Þ 6.6 × 10−8
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variations must be inserted back into the perturbation terms
generated by PN effects. These will produce cross-term
contributions of the same order as those coming directly
from the equations of motion. Second, it is conventional to
identify secular variations by integrating over a complete
cycle of the true anomaly, which runs from pericenter to
pericenter. But in converting from d=dt in the Lagrange
planetary equations to d=df, we must use the last of Eq. (5)
instead of the conventional relation r2df=dt ¼ ðGmpÞ1=2.
The added term comes from the fact that, while t is
measured from a fixed moment of time, f is measured
from the pericenter, which changes via _ϖ. This added term,
interacting with the PN and Newtonian third-body terms,
will also generate cross-term effects between PN and third-
body terms. Finally, it is important to define consistently
the orbit-averaged elements and the “average-free” varia-
tions of the elements over an orbital timescale; this is best
carried out using a standard “two-timescale” analysis (see
[22,23] for examples in a post-Newtonian context). It is
also conventional, in considering secular perturbations in a
many-body context, to average over the orbital period of
the third body. The result of such an analysis is that, over
one orbit, Δp ¼ Δe ¼ 0, and Δϖ is given by Eq. (1).
Discussion.—The PN cross-term effects on Mercury’s

perihelion advance that we have pointed out arise from a
subset of the post-Newtonian terms in the N-body equa-
tions of motion. Those equations (modified to include the
PPN parameters β and γ) as adopted by Moyer in the early
Jet Propulsion Laboratory (JPL) technical memoranda
[9,10] are the basis for many modern ephemeris and
orbit-determination codes (see e.g. [24]). However different
groups or space agencies adopt different implementations
of the basic equations. If all ephemeris codes currently in
use retain the summations over all the planets in all post-
Newtonian terms, then, by definition all the relevant cross-
term effects will be included, along with many effects that
are negligible (such as PN effects due to the planets alone,
of order G2m2

3r
2=c2R4). If there are any truncations of the

sums, then the code might not properly account for the
cross-term effects pointed out here. The codes currently in
use at JPL do include all terms [25], but it is not known if
this is universally true; it would be important to verify
this, particularly for groups that will be involved in
BepiColombo data analysis. Even if all such terms are
included in the codes, their existence and cross-correlations
may play a role in assessing the uncertainties in estimating
γ and β, and in measurements of the contributions to
Mercury’s perihelion advance arising from the solar quad-
rupole moment and from frame dragging that will be
carried out using data from BepiColombo.
We assumed general relativity in deriving the cross terms

reported here; it is straightforward to generalize those
results to the PPN formalism (e.g. with γ, β, α1, and α2
arbitrary), and those results will be reported elsewhere. But
the present constraints on these parameters are already so

stringent that we do not expect PPN cross-term effects to
contribute directly to improving the bounds on the PPN
parameters.
Finally, at a purely pedagogical level, it is often stated

that the relativistic perihelion advance of Mercury is really
only a test of the vacuum Schwarzschild solution (or of the
slow rotation limit of the vacuum Kerr solution, if one
wishes to include the frame-dragging effect), since all the
relativistic effects can be derived simply from those
metrics. If BebiColombo can reach a part per million
accuracy in measuring the perihelion advance, it will be
possible to put this idea to rest, since it will measure, for the
first time, relativistic effects on Mercury’s orbit arising
from the planets that surround it.
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