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Heat engines should ideally have large power output, operate close to Carnot efficiency and show
constancy, i.e., exhibit only small fluctuations in this output. For steady-state heat engines, driven by a
constant temperature difference between the two heat baths, we prove that out of these three requirements
only two are compatible. Constancy enters quantitatively the conventional trade-off between power and
efficiency. Thus, we rationalize and unify recent suggestions for overcoming this simple trade-off. Our
universal bound is illustrated for a paradigmatic model of a quantum dot solar cell and for a Brownian
gyrator delivering mechanical work against an external force.
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The efficiency η of heat engines operating cyclically
between a hot heat reservoir at temperature Th and a cold
one at Tc is universally bounded from above by the Carnot
value ηC ≡ 1 − Tc=Th. Moreover, it was commonly
believed that reaching Carnot efficiency inevitably comes
with a vanishing power P since such engines require quasi-
static conditions leading to an infinite cycle-time. This
supposedly universal trade-off between power and effi-
ciency has more recently been challenged by studies
hinting at the possibility to come at least arbitrarily close
to Carnot efficiency with finite power by a particular
coupling between subsystems [1] or by exploiting a work-
ing substance at a critical point [2]. On the other hand, a
general bound of the type P ≤ AðηC − ηÞ with a system-
specific amplitude A has been proven for cyclic engines
both in linear response [3] and beyond [4]. These two
strands of reasoning can be reconciled only if one allows
for a diverging amplitude A as the efficiency approaches the
Carnot value.
For steady-state heat engines permanently coupled to

two heat baths like in thermoelectric setups, the common
argument from above invoking quasistatic conditions and
hence an infinite cycle time is not directly applicable. It has
usually been replaced with the idea that finite currents
necessarily lead to dissipation which should spoil the
option of reaching the Carnot limit at finite power. This
view was challenged by a seminal paper from Benenti et al.
[5], who pointed out that if time-reversal symmetry is
broken, like in the presence of a magnetic field, the usual
approach based on linear irreversible thermodynamics does
not forbid Carnot efficiency at finite power. Subsequent
studies showed with somewhat more specific assumptions
that Carnot efficiency at finite power is not accessible. This
holds true, e.g., for any finite number of terminals in a
multiterminal set-up within linear response theory [6,7],

and for an effective two-terminal device containing inelas-
tic electron-phonon processes [8]. However, as for cyclic
engines, it has recently been pointed out that in certain
limits Carnot efficiency at finite power can be reached in
models of steady-state engines. Specific proposals include
two-cycle engines with diverging affinities [9], a specially
designed Feynman-Smoluchowski ratchet [10], and sys-
tems with a singular transport law [11,12].
These observations taken together indicate that when

searching for a universal trade-off it may not be enough to
focus only on the two characteristics power and efficiency,
and their relationship if one of them becomes maximal as it
is typically done, see also [13–28]. As we will show in this
Letter, as a crucial third quantity, power fluctuations enter
quantitatively into this balance. Specifically, we will prove
for a huge class of steady-state heat engines, which includes
all thermodynamically consistent machines with a classical
discrete set of internal states and continuous ones modeled
with an overdamped Langevin dynamics, that there is a
universal trade-off between three desiderata: Finite (or even
large) power, an efficiency close to the Carnot value, and
constancy in the sense of small fluctuations in the power
output are not compatible. Specifically, the bound

P
η

ηC − η

Tc

ΔP
≤
1

2
ð1Þ

constrains (mean) output power, efficiency, and the power
fluctuations in finite time as measured by

ΔP ≡ lim
t→∞

hðPðtÞ − PÞ2it: ð2Þ

Here, PðtÞ is the fluctuating power after time t evaluated in
the steady state, for which h…i denotes averages. Since the
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mean output work grows linearly in time as does its
variance, converting work fluctuations into power fluctua-
tions requires the additional factor of t to reach a finite limit
for ΔP, with which we characterize the constancy, or
stability [29], of the engine. In particular for nanoscopic
heat engines, power fluctuations due to thermal noise are
not negligible compared to the mean work output on
relevant time scales and should therefore be taken into
account for a thermodynamic description. The crucial role
power fluctuations play in the above bound is comple-
mentary to their effect in the statistics of efficiency in a
finite time [30–33].
As a main first consequence of this new bound for

steady-state heat engines, it is obvious that as long as the
power fluctuations remain finite (and Tc as well), approach-
ing Carnot efficiency implies that the power has to vanish at
least linearly. The explicit occurrence of ΔP as an ampli-
tude in a putative linear relationship between power and
efficiency gap to Carnot, however, offers a second option. If
the fluctuations blow up, then a finite (or even diverging)
power is not ruled out as η → ηC, which unifies quantita-
tively the various observations recalled above.
The bound (1) can be rearranged as a bound on efficiency

η ≤
ηC

1þ 2PTc=ΔP
; ð3Þ

determined by mean and fluctuations of the output power.
Thus, the efficiency of any steady-state heat engine is
bounded from above by this simple expression independent
of the specific design of the engine. The formal similarity of
(3) with a bound derived for the efficiency of molecular
motors [34] indicates as common origin of these bounds the
thermodynamic uncertainty relation [35,36], which
describes a universal inequality between entropy produc-
tion and mean and variance of an arbitrary current.
For a proof of the universal trade-off (1), we consider an

engine characterized by a set of internal states fig with
internal energies fEig. A transition between state i and j
takes place with a rate kcij if it is mediated by the contact to
the cold bath and with a rate khij if it is mediated by the hot
bath. One of these rates can be zero, which means that this
particular transition always involves the other bath. For any
nonzero rate, the corresponding backward rate does not
vanish either, and it obeys the local detailed balance
condition [37]

kc;hij

kc;hji

¼ exp½ðEi − Ej þ bc;hij μc;h − fdijÞ=Tc;h�; ð4Þ

where we set Boltzmann’s constant to 1 throughout the
Letter. Here, Ei;j are the internal energies of the two states.
If the transition from i to j requires the transport of an
electron from the bath with temperature Ta ða ¼ c; hÞ and
chemical potential μa to the system, then baij ¼ 1. Likewise,

if this transition involves the release of an electron to a bath,
baij ¼ −1. In both cases, the chemical potentials enter the
expression in the exponent providing a contribution to the
total free energy involved in such a transition. The last term
in the exponent is nonzero if this transition additionally
involves a step of length dij against an external force f.
Generalizations to several species of particles, further
baths, or the case of rotary motion against an applied
torque should be obvious.
In the steady state, where state i is realized with

probability pi, this engine can be characterized by three
important mean currents, the heat current

jh ¼
X
i<j

ðpikhij − pjkhjiÞðEj − Ei − bhijμhÞ ð5Þ

from the hot bath to the engine, the heat current

jc ¼ −
X
i<j

ðpikcij − pjkcjiÞðEj − Ei − bcijμcÞ ð6Þ

from the engine to the cold bath, and the “work current”

jw ¼ jh − jc ¼ P; ð7Þ

which, due to the first law, is the power delivered by the
engine. Running the engine for a finite time t, each of the
currents will fluctuate around these mean values with a
dispersion [38]

Dα ≡ lim
t→∞

hðjαðtÞ − jαÞ2it=2; ð8Þ

where α ¼ h, c, w. The mean entropy production rate
becomes

σ ¼ jc=Tc − jh=Th ¼ jwðηC=η − 1Þ=Tc: ð9Þ

Since this Markovian network is thermodynamically
consistent, one can directly apply the thermodynamic
uncertainty relation, which reads for any of the three
currents [35,36]

σDα ≥ j2α: ð10Þ

Evaluating this relation for the work current, α ¼ w, leads,
with ΔP ¼ 2Dw, (7) and (9), to the bound (1).
Two related, but not identical, forms of this bound can be

derived similarly by applying the thermodynamic uncer-
tainty relation to either the heat current from the hot bath or
the one entering the cold bath. Expressed as bound on
power, they read explicitly

P ≤ ðηC − ηÞηDh=Tc ð11Þ

and
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P ≤ ðηC − ηÞηDc=½ð1 − ηÞ2Tc�; ð12Þ

respectively. Obviously, in order to reach a finite value for
the power as η → ηC, the fluctuations in all three currents
have to diverge at least ∼1=ðηC − ηÞ since each of the three
bounds (1), (11), (12) has to be respected.
For an illustration of these bounds, we consider a simple

but instructive model for a solar cell introduced in Ref. [39]
as shown in Fig. 1(a). It consists of a two level quantum dot
that can either be empty (state 0) or contain an electron in
one of the levels El < Er (states l and r, respectively).
Electrons are transported through the dot from a left
reservoir with chemical potential μl and temperature Tc
to a right reservoir with higher chemical potential μr and
the same temperature Tc. They enter the level El from the
left reservoir at a rate kc0l, and they jump back at a rate kcl0.
Analogously, the level Er is connected to the right reservoir
via the transition rates kcr0 and kc0r. Transitions between the

two states can occur either nonradiatively through inter-
actions with the surrounding phonon bath at temperature Tc
with rates kclr and kcrl or are mediated by the black body
radiation of the sun with temperature Th at rates khlr and k

h
rl.

The transition rates to and from the two electron reservoirs
(i ¼ l, r) are chosen according to the Fermi-Dirac distri-
bution as

kc0i ¼ Γi=½1þ expðxiÞ�; kci0 ¼ Γi=½1þ expð−xiÞ� ð13Þ

with frequencies Γi and affinities xi ¼ ðEi − μiÞ=Tc. The
transition rates between the two states in contact with the
cold phonon bath or hot photon bath (a ¼ c, h, respec-
tively) are determined by the Bose-Einstein distribution

kalr ¼ Γa=½expðxaÞ − 1�; karl ¼ Γa=½1 − expð−xaÞ�; ð14Þ

with frequencies Γj and affinities xa ¼ ðEr − ElÞ=Ta. All
four pairs of rates satisfy the local detailed balance
condition (4).
In a network representation of this system [Fig. 1(b)], we

can identify two independent cycle currents. The variables
X1 and X2 count the net number of electrons transported
from state l to state r via radiative and nonradiative
transitions, respectively. The total number of transported
electrons is thus Xe ¼ X1 þ X2 (up to a single electron
that might still be in the two-level system, which does not
affect the statistics of fluctuations in the long-time limit).
The joint fluctuations of these counting variables are
characterized by the average currents hX1;2ðtÞi ¼ j1;2t
and their covariance hðXiðtÞ − jitÞðXjðtÞ − jjtÞi ¼ 2Dijt
for large t, which can be calculated directly from the rates
(13) and (14) [40].
For the mean power, mean heat current from the hot

reservoir, and mean heat current into the cold reservoir, one
obtains

P ¼ Δμðj1 þ j2Þ; ð15Þ

jh ¼ ΔEj1; ð16Þ

jc ¼ ðΔE − ΔμÞj1 − Δμj2; ð17Þ

respectively, with ΔE≡ Er − El and Δμ≡ μr − μl. For the
corresponding dispersion coefficients, one gets

Dw ¼ Δμ2ðD11 þD22 þ 2D12Þ; ð18Þ

Dh ¼ ΔE2D11; ð19Þ

Dc ¼ ðΔE − ΔμÞ2D11 þ Δμ2D22 − 2ðΔE − ΔμÞΔμD12:

ð20Þ

In the “strong coupling” limit of negligible nonradiative
transitions (Γc → 0 and hence X2, j2, D22, and D12 → 0),

(a) (b)

(c)

FIG. 1. (a) Model for a photoelectric device, transporting
electrons between two reservoirs through a quantum dot with
two energy levels. Transitions to and from the baths (blue solid
arrows) and nonradiative transitions between the energy levels
(blue dashed arrows) occur in contact with the cold bath.
Radiative transitions (red curved arrows) occur in contact with
the hot bath. (b) The network representation of the three possible
states of the quantum dot allows for an identification of the two
cycle currents associated with radiative (j1) and nonradiative
transitions (j2). (c) Output power and efficiency (inset) of the
photoelectric device as a function of the scaling parameter Ω
entering the rates and affinities according to xc ¼ 10, xh ¼ 0.2,
xl ¼ 1, xr ¼ 1.2þ 7=Ω, Γl ¼ Γr ¼ Γh ¼ ΩΓ0, Γc ¼ Ω−1.5Γ0,
where Γ0 is a frequency of reference. The power fluctuations,
quantified by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔP=ð10Γ0Þ

p
, are shown as a grey shaded region.

The three bounds on the output power (1), (11), (12) are shown as
dashed, dash-dotted and dotted curves, respectively.
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the efficiency of the photoelectric device becomes
η ¼ Δμ=ΔE. By gradually increasing the chemical poten-
tial difference Δμwith fixed ΔE, this ratio can approach ηC
from below. In Fig. 1(c), this limit is realized by increasing
the chemical potential μr via a scaling parameter Ω while
keeping μl, the energies, and the temperatures fixed, as
detailed in the caption. We show that finite power can be
achieved in this limit by increasing the rates Γl, Γr, and Γh
while reducing Γc [44]. Crucially, as predicted by relation
(1), the fluctuations of the output power diverge in such a
scenario.
The uncertainty relation (10) becomes tight in the linear

response limit for unicyclic networks [35]. Hence, for
strong coupling and vanishing cycle affinity

ln
kc0lk

h
lrk

c
r0

kc0rk
h
rlk

c
l0

¼ xr − xl − xh ¼ ðηCΔE − ΔμÞ=Tc; ð21Þ

as realized for a large scaling parameter Ω in Fig. 1(c), all
three bounds on the power output (1), (11), (12) saturate.
Beyond the linear response and strong-coupling limit,
the bounds can become weaker. As explored in the
Supplemental Material [40], depending on the values of
the transition frequencies, each of the three bounds can
become the strongest one, demonstrating that these are
independent bounds.
Since the thermodynamic uncertainty relation (10) has

also been proven for overdamped Langevin dynamics
[45,46], the resulting trade-offs apply as well to steady-
state heat engines modeled on such a continuous state
space. For an analytically solvable illustration, we consider
the so-called Brownian gyrator [47], which has recently
been realized experimentally in an electronic [48] and in a
colloidal system [49]. The setup, shown in Fig. 2(a),
consists of a point particle with mobility μ in two
dimensions and an anisotropic harmonic potential VðxÞ¼
ðu1x21þu2x22Þ=2þcx1x2 with u1;2 > 0 and 0<c<

ffiffiffiffiffiffiffiffiffiffi
u1u2

p
.

Its motion obeys the Langevin equation

dx=dt ¼ μ½−∂V=∂xþ FextðxÞ� þ ζðtÞ; ð22Þ

where the noise term has mean hζðtÞi ¼ 0 and correlations
hζiðtÞζjðt0Þi ¼ 2μTiδijδðt − t0Þ; i.e., the two components of
the fluctuating force are associated with heat reservoirs at
two different temperatures Ti. We choose T1 ≡ Tc <
T2 ≡ Th. In the established case with FextðxÞ ¼ 0, the
coupling c ≠ 0 in the potential mediates a steady transfer of
heat from the hot to the cold reservoir, that is accompanied
by a persistent directed gyration of the particle [47]. In
order to extract mechanical work from this gyration, we
load the engine with a nonconservative external counter
force FextðxÞ. As the simplest, linear realization of such a
force, we choose FextðxÞ ¼ ðFext

1 ; Fext
2 ÞT ¼ kðx2;−x1ÞT

with a parameter k. Following the rules of stochastic

thermodynamics [37], along an individual trajectory we
identify the work

đw ¼ −dx · FextðxÞ; ð23Þ

performed against the external force, the heat

đqc ¼ dx1½−∂VðxÞ=∂x1 þ Fext
1 ðxÞ� ð24Þ

dissipated into the cold heat bath, and the heat

đqh ¼ −dx2½−∂VðxÞ=∂x2 þ Fext
2 ðxÞ� ð25Þ

extracted from the hot heat bath. The corresponding
integrated currents follow from these differentials through
the Stratonovich integration scheme.
The average mechanical power can be calculated as [40]

P ¼ jw ¼ hđw=dti ¼ 4Pmax
k
ks

�
1 −

k
ks

�
; ð26Þ

with the stall parameter ks ≡ cηC=ð2 − ηCÞ and the maxi-
mal power Pmax ≡ μk2sðTc þ ThÞ=ð2ðu1 þ u2ÞÞ. The sys-
tem operates as a heat engine, delivering mechanical work
for 0 < k < ks. Its efficiency is then given by

η ¼ jw=jh ¼ 2k=ðcþ kÞ ≤ ηC: ð27Þ

The diffusion coefficientsDw;c;h of the three currents can be
calculated analytically as well. It turns out that the
uncertainty relation (10) becomes the same for each
current,

(a) (b)

FIG. 2. (a) Schematic trajectory of a Brownian gyrator with the
two-dimensional potential Vðx1; x2Þ shown as contour lines.
The anisotropic noise leads to a gyration in counter-clockwise
direction against the external force with parameter k. (b) Scaled
power (top) and efficiency (bottom) as a function of the force
parameter k. The respective bounds (11) and (3) become tighter
with decreasing c. Parameters: Tc ¼ 1, Th ¼ 7, μ ¼ 1, u1 ¼ 1,
u2 ¼ 1.2.
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Dwσ

j2w
¼ Dcσ

j2c
¼ Dhσ

j2h
¼ 1þ ½cηCð1 − k=ksÞ�2

ðu1 þ u2Þ2ð1 − ηCÞ
≥ 1; ð28Þ

with the entropy production rate σ as defined in Eq. (9). The
resulting bounds on the power and efficiency are shown in
Fig. 2(b). These bounds become strong when the ratio
Dwσ=j2w in Eq. (28) is close to one, as it is the case for
moderate temperature differences or small couplings c with
respect to the parameters u1;2. For k close to ks, the bounds
on both power and efficiency become tight in linear order in
ðks − kÞ, independently of all other parameters. Because of
a tight coupling between heat and work currents, this
regime corresponds to a weak driving of the system within
linear response, for which the uncertainty relation can
generally be saturated. For k → ks, as the efficiency
approaches the Carnot limit, the power vanishes. Since
the constancy of the power remains finite, this typical
behavior of a heat engine can be interpreted as a conse-
quence of the universal relation (1). The unusual case of
finite power close to Carnot efficiency can yet be obtained
by scaling the mobility μ, which comes at the cost of
diverging power fluctuations [40].
In summary, we have derived a bound providing a

universal trade-off between power, efficiency, and con-
stancy, i.e., fluctuations in the power output. A finite (or
even diverging) power as Carnot efficiency is approached,
necessarily requires the latter to diverge. The three versions
of the bound hold beyond the linear response regime of a
small temperature difference between the two heat reser-
voirs. We have derived these results for steady-state engines
described by thermodynamically consistent Markovian
dynamics on a discrete state space and for overdamped
Langevin dynamics. They also apply to apparently non-
Markovian heat engines, provided that there is a suffi-
ciently fine-grained level of description on which the
system obeys Markovian stochastic dynamics, however
complex this description might be. The generalization to
underdamped Langevin dynamics might be somewhat
more subtle.
One might expect that similar results could be derived for

cyclic, i.e., periodically driven, heat engines [15] that can
be experimentally realized for colloidal systems [50,51]
and with active baths [52]. In particular, a certain formal
analogy of (1) with the bound derived in [4] for cyclic
engines is striking. However, the analysis of a periodically
driven Brownian clock in [53] shows that the steady-state
bound (10), relating entropy production, mean current, and
dispersion, cannot naively be extended to periodically
driven systems. Therefore, it remains an exciting open
question whether there are periodically driven heat engines
that beat the, for steady-state engines universal, bound (1).
We have focused on the question whether Carnot

efficiency can be reached with finite power. More generally,
one can ask for any given class of machines whether the
power at the maximal efficiency, which may be less than

Carnot (or less than 1 for isothermal machines), can be
bounded or shown to vanish. Exploring this issue, using the
techniques introduced here, will be left to future work.
Finally, it will be interesting to investigate whether and how
constancy enters bounds for genuine quantum heat engines
that exploit coherences—see [54] and references therein.

[1] A. E. Allahverdyan, K. V. Hovhannisyan, A. V. Melkikh,
and S. G. Gevorkian, Carnot Cycle at Finite Power: Attain-
ability of Maximal Efficiency, Phys. Rev. Lett. 111, 050601
(2013).

[2] M. Campisi and R. Fazio, The power of a critical heat
engine, Nat. Commun. 7, 11895 (2016).

[3] K. Brandner, K. Saito, and U. Seifert, Thermodynamics of
Micro- and Nano-Systems Driven by Periodic Temperature
Variations, Phys. Rev. X 5, 031019 (2015).

[4] N. Shiraishi, K. Saito, and H. Tasaki, Universal Trade-Off
Relation between Power and Efficiency for Heat Engines,
Phys. Rev. Lett. 117, 190601 (2016).

[5] G. Benenti, K. Saito, and G. Casati, Thermodynamic
Bounds on Efficiency for Systems with Broken Time-
Reversal Symmetry, Phys. Rev. Lett. 106, 230602 (2011).

[6] K. Brandner and U. Seifert, Multi-terminal thermoelectric
transport in a magnetic field: Bounds on Onsager coef-
ficients and efficiency, New J. Phys. 15, 105003 (2013).

[7] K. Brandner and U. Seifert, Bound on thermoelectric power
in a magnetic field within linear response, Phys. Rev. E 91,
012121 (2015).

[8] K. Yamamoto, O. Entin-Wohlman, A. Aharony, and N.
Hatano, Efficiency bounds on thermoelectric transport in
magnetic fields: The role of inelastic processes, Phys. Rev.
B 94, 121402 (2016).

[9] M. Polettini and M. Esposito, Carnot efficiency at divergent
power output, Europhys. Lett. 118, 40003 (2017).

[10] J. S. Lee and H. Park, Carnot efficiency is reachable in an
irreversible process, Sci. Rep. 7, 10725 (2017).

[11] N. Shiraishi, Attainability of Carnot efficiency with autono-
mous engines, Phys. Rev. E 92, 050101 (2015).

[12] J. Koning and J. O. Indekeu, Engines with ideal efficiency
and nonzero power for sublinear transport laws, Eur. Phys. J.
B 89, 248 (2016).

[13] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine
at maximum power output, Am. J. Phys. 43, 22 (1975).

[14] C. Van den Broeck, Thermodynamic Efficiency at Maxi-
mum Power, Phys. Rev. Lett. 95, 190602 (2005).

[15] T. Schmiedl and U. Seifert, Efficiency at maximum power:
An analytically solvable model for stochastic heat engines,
Europhys. Lett. 81, 20003 (2008).

[16] Z. C. Tu, Efficiency at maximum power of Feynman’s
ratchet as a heat engine, J. Phys. A 41, 312003 (2008).

[17] M. Esposito, K. Lindenberg, and C. Van den Broeck,
Universality of Efficiency at Maximum Power, Phys.
Rev. Lett. 102, 130602 (2009).

[18] N. Nakpathomkun, H. Q. Xu, and H. Linke, Thermoelectric
efficiency at maximum power in low-dimensional systems,
Phys. Rev. B 82, 235428 (2010).

[19] U. Seifert, Efficiency of Autonomous Soft Nano-Machines
at Maximum Power, Phys. Rev. Lett. 106, 020601 (2011).

PHYSICAL REVIEW LETTERS 120, 190602 (2018)

190602-5

https://doi.org/10.1103/PhysRevLett.111.050601
https://doi.org/10.1103/PhysRevLett.111.050601
https://doi.org/10.1038/ncomms11895
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevLett.117.190601
https://doi.org/10.1103/PhysRevLett.106.230602
https://doi.org/10.1088/1367-2630/15/10/105003
https://doi.org/10.1103/PhysRevE.91.012121
https://doi.org/10.1103/PhysRevE.91.012121
https://doi.org/10.1103/PhysRevB.94.121402
https://doi.org/10.1103/PhysRevB.94.121402
https://doi.org/10.1209/0295-5075/118/40003
https://doi.org/10.1038/s41598-017-10664-9
https://doi.org/10.1103/PhysRevE.92.050101
https://doi.org/10.1140/epjb/e2016-70297-9
https://doi.org/10.1140/epjb/e2016-70297-9
https://doi.org/10.1119/1.10023
https://doi.org/10.1103/PhysRevLett.95.190602
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1088/1751-8113/41/31/312003
https://doi.org/10.1103/PhysRevLett.102.130602
https://doi.org/10.1103/PhysRevLett.102.130602
https://doi.org/10.1103/PhysRevB.82.235428
https://doi.org/10.1103/PhysRevLett.106.020601


[20] Y. Izumida and K. Okuda, Efficiency at maximal power of
minimal nonlinear irreversible heat engines, Europhys. Lett.
97, 10004 (2012).

[21] N. Golubeva and A. Imparato, Efficiency at Maximum
Power of Interacting Molecular Machines, Phys. Rev. Lett.
109, 190602 (2012).

[22] C. de Tomas, J. M. M. Roco, A. C. Hernández, Y. Wang,
and Z. C. Tu, Low-dissipation heat devices: Unified trade-
off optimization and bounds, Phys. Rev. E 87, 012105
(2013).

[23] J. Stark, K. Brandner, K. Saito, and U. Seifert, Classical
Nernst Engine, Phys. Rev. Lett. 112, 140601 (2014).

[24] R. S. Whitney, Most efficient Quantum Thermoelectric
at Finite Power Output, Phys. Rev. Lett. 112, 130601
(2014).

[25] J.-H. Jiang, Thermodynamic bounds and general properties
of optimal efficiency and power in linear responses, Phys.
Rev. E 90, 042126 (2014).

[26] O. Raz, Y. Subaşı, and R. Pugatch, Geometric Heat Engines
Featuring Power that Grows with Efficiency, Phys. Rev.
Lett. 116, 160601 (2016).

[27] M. Bauer, K. Brandner, and U. Seifert, Optimal perfor-
mance of periodically driven, stochastic heat engines under
limited control, Phys. Rev. E 93, 042112 (2016).

[28] K. Proesmans, B. Cleuren, and C. Van den Broeck, Power-
Efficiency-Dissipation Relations in Linear Thermodynam-
ics, Phys. Rev. Lett. 116, 220601 (2016).

[29] V. Holubec, An exactly solvable model of a stochastic heat
engine: optimization of power, power fluctuations and
efficiency, J. Stat. Mech. (2014) P05022; V. Holubec and
A. Ryabov, Work and power fluctuations in a critical heat
engine, Phys. Rev. E 96, 030102(R) (2017).

[30] G. Verley, M. Esposito, T. Willaert, and C. Van den Broeck,
The unlikely Carnot efficiency, Nat. Commun. 5, 4721
(2014).

[31] T. R. Gingrich, G. M. Rotskoff, S. Vaikuntanathan, and P. L.
Geissler, Efficiency and large deviations in time-asymmetric
stochastic heat engines, New J. Phys. 16, 102003 (2014).

[32] M. Polettini, G. Verley, and M. Esposito, Efficiency Sta-
tistics at All Times: Carnot Limit at Finite Power, Phys. Rev.
Lett. 114, 050601 (2015).

[33] K. Proesmans and C. Van den Broeck, Stochastic efficiency:
five case studies, New J. Phys. 17, 065004 (2015).

[34] P. Pietzonka, A. C. Barato, and U. Seifert, Universal bound
on the efficiency of molecular motors, J. Stat. Mech. (2016)
124004.

[35] A. C. Barato and U. Seifert, Thermodynamic Uncertainty
Relation for Biomolecular Processes, Phys. Rev. Lett. 114,
158101 (2015).

[36] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L.
England, Dissipation Bounds All Steady-State Current
Fluctuations, Phys. Rev. Lett. 116, 120601 (2016).

[37] U. Seifert, Stochastic thermodynamics, fluctuation theo-
rems, and molecular machines, Rep. Prog. Phys. 75, 126001
(2012).

[38] The fluctuating currents jαðtÞ are formally defined as
jhðtÞ¼

P
i<jn

h
ijðtÞðEj−Ei−bhijμhÞ=t, jcðtÞ¼−

P
i<jn

c
ijðtÞ×

ðEj−Ei−bcijμcÞ=t, and jwðtÞ¼
P

i<j½−bhijnhijðtÞðμh−μcÞþ
ðnhijðtÞþncijðtÞÞfdij�=t, with naijðtÞ being the net number of
transitions between i and j, mediated by the hot (a ¼ h) or
cold (a ¼ c) bath up to the time t.

[39] B. Rutten, M. Esposito, and B. Cleuren, Reaching optimal
efficiencies using nanosized photoelectric devices, Phys.
Rev. B 80, 235122 (2009).

[40] See Supplemental Material (including Refs. [41–43]) at
http://link.aps.org/supplemental/10.1103/PhysRevLett.120
.190602 for detailed calculations for the quantum dot solar
cell and the Brownian gyrator.

[41] Z. Koza, General technique of calculating the drift velocity
and diffusion coefficient in arbitrary periodic systems,
J. Phys. A 32, 7637 (1999).

[42] M. Baiesi, C. Maes, and K. Netočný, Computation of
current cumulants for small nonequilibrium systems,
J. Stat. Phys. 135, 57 (2009).

[43] H. Touchette, Introduction to dynamical large deviations of
Markov processes, Physica (Amsterdam) A, DOI: 10.1016/
j.physa.2017.10.046, 2018.

[44] A similar scaling has been used to achieve Carnot efficiency
at divergent power output in Ref. [9].

[45] M. Polettini, A. Lazarescu, and M. Esposito, Tightening the
uncertainty principle for stochastic currents, Phys. Rev. E
94, 052104 (2016).

[46] T. R. Gingrich, G. M. Rotskoff, and J. M. Horowitz, Infer-
ring dissipation from current fluctuations, J. Phys. A 50,
184004 (2017).

[47] R. Filliger and P. Reimann, Brownian gyrator: A Minimal
Heat Engine on the Nanoscale, Phys. Rev. Lett. 99, 230602
(2007).

[48] K.-H. Chiang, C.-L. Lee, P.-Y. Lai, and Y.-F. Chen,
Electrical autonomous Brownian gyrator, Phys. Rev. E
96, 032123 (2017).

[49] A. Argun, J. Soni, L. Dabelow, S. Bo, G. Pesce, R.
Eichhorn, and G. Volpe, Experimental realization of a
minimal microscopic heat engine, Phys. Rev. E 96,
052106 (2017).

[50] V. Blickle and C. Bechinger, Realization of a micrometre-
sized stochastic heat engine, Nat. Phys. 8, 143 (2012).

[51] I. A. Martínez, E. Roldán, L. Dinis, D. Petrov, J. M. R.
Parrondo, and R. A. Rica, Brownian Carnot engine, Nat.
Phys. 12, 67 (2016).

[52] S. Krishnamurthy, S. Ghosh, D. Chatterji, R. Ganapathy,
and A. K. Sood, A micrometre-sized heat engine operating
between bacterial reservoirs, Nat. Phys. 12, 1134 (2016).

[53] A. C. Barato and U. Seifert, Cost and Precision of Brownian
Clocks, Phys. Rev. X 6, 041053 (2016).

[54] K. Brandner, M. Bauer, and U. Seifert, Universal
Coherence-Induced Power Losses of Quantum Heat
Engines in Linear Response, Phys. Rev. Lett. 119,
170602 (2017).

PHYSICAL REVIEW LETTERS 120, 190602 (2018)

190602-6

https://doi.org/10.1209/0295-5075/97/10004
https://doi.org/10.1209/0295-5075/97/10004
https://doi.org/10.1103/PhysRevLett.109.190602
https://doi.org/10.1103/PhysRevLett.109.190602
https://doi.org/10.1103/PhysRevE.87.012105
https://doi.org/10.1103/PhysRevE.87.012105
https://doi.org/10.1103/PhysRevLett.112.140601
https://doi.org/10.1103/PhysRevLett.112.130601
https://doi.org/10.1103/PhysRevLett.112.130601
https://doi.org/10.1103/PhysRevE.90.042126
https://doi.org/10.1103/PhysRevE.90.042126
https://doi.org/10.1103/PhysRevLett.116.160601
https://doi.org/10.1103/PhysRevLett.116.160601
https://doi.org/10.1103/PhysRevE.93.042112
https://doi.org/10.1103/PhysRevLett.116.220601
https://doi.org/10.1088/1742-5468/2014/05/P05022
https://doi.org/10.1103/PhysRevE.96.030102
https://doi.org/10.1038/ncomms5721
https://doi.org/10.1038/ncomms5721
https://doi.org/10.1088/1367-2630/16/10/102003
https://doi.org/10.1103/PhysRevLett.114.050601
https://doi.org/10.1103/PhysRevLett.114.050601
https://doi.org/10.1088/1367-2630/17/6/065004
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevB.80.235122
https://doi.org/10.1103/PhysRevB.80.235122
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.190602
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.190602
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.190602
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.190602
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.190602
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.190602
https://doi.org/10.1088/0305-4470/32/44/303
https://doi.org/10.1007/s10955-009-9723-3
https://doi.org/10.1016/j.physa.2017.10.046
https://doi.org/10.1016/j.physa.2017.10.046
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1103/PhysRevLett.99.230602
https://doi.org/10.1103/PhysRevLett.99.230602
https://doi.org/10.1103/PhysRevE.96.032123
https://doi.org/10.1103/PhysRevE.96.032123
https://doi.org/10.1103/PhysRevE.96.052106
https://doi.org/10.1103/PhysRevE.96.052106
https://doi.org/10.1038/nphys2163
https://doi.org/10.1038/nphys3518
https://doi.org/10.1038/nphys3518
https://doi.org/10.1038/nphys3870
https://doi.org/10.1103/PhysRevX.6.041053
https://doi.org/10.1103/PhysRevLett.119.170602
https://doi.org/10.1103/PhysRevLett.119.170602

