
 

Causal Modeling the Delayed-Choice Experiment

Rafael Chaves, Gabriela Barreto Lemos, and Jacques Pienaar
International Institute of Physics, Universidade Federal do Rio Grande do Norte,
Campus Universitario, Lagoa Nova, Natal, Rio Grande do Norte 59078-970, Brazil

(Received 25 October 2017; published 7 May 2018)

Wave-particle duality has become one of the flagships of quantum mechanics. This counterintuitive
concept is highlighted in a delayed-choice experiment, where the experimental setup that reveals either the
particle or wave nature of a quantum system is decided after the system has entered the apparatus. Here
we consider delayed-choice experiments from the perspective of device-independent causal models and
show their equivalence to a prepare-and-measure scenario. Within this framework, we consider Wheeler’s
original proposal and its variant using a quantum control and show that a simple classical causal model is
capable of reproducing the quantum mechanical predictions. Nonetheless, among other results, we show
that, in a slight variant of Wheeler’s gedanken experiment, a photon in an interferometer can indeed
generate statistics incompatible with any nonretrocausal hidden variable model, whose dimensionality is
the same as that of the quantum system it is supposed to mimic. Our proposal tolerates arbitrary losses and
inefficiencies, making it specially suited to loophole-free experimental implementations.
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Wave-particle duality is at the heart of the most
renowned debates in quantum theory. Although light and
matter produce individual counts on a detector, they also
exhibit interference in certain experimental arrangements.
In Wheeler’s delayed-choice experiment (WDCE) (Fig. 1)
[1,2], the experimenter chooses whether or not to remove
the beam splitter BS2 after a photon has entered a Mach-
Zehnder interferometer (at BS1), thereby observing no
interference (particlelike behavior) or interference (wave-
like behavior) accordingly [3]. By excluding any causal
link between the experimental setup and a hidden variable
that predefines the photons behavior (retrocausality),
delayed-choice experiments are usually about defining
and testing wave-particle objectivity models, in which a
quantum system is intrinsically either a wave or a particle
(see [5] and references therein).
Within this mindset, Ionicioiu and Terno suggested a

particular wave-particle objective model [6] (hereafter
called the IT model), which they ruled out using a quantum
delayed-choice experiment (QDCE), realized in [7], in
which the BS2 in WDCE is replaced by a quantum control
that can be in a superposition of being present or absent
until after the photon is detected. This reasoning relies upon
a device-dependent argument that the beam splitter was
truly in a quantum superposition, since the statistics alone
could not distinguish a superposition from an incoherent
mixture. This motivated entanglement-assisted QDCE
[8–10], in particular, the experiments in [11,12], which
rely on the violation of a Bell inequality to rule out the IT
model in a device-independent (DI) manner, i.e., from the
measurement statistics alone without prior assumptions
about the quantum nature of the control. However, the IT

model of wave-particle objectivity makes rather strong
assumptions that, as we show below, are trivially incon-
sistent with the assumption of no retrocausality and the
quantum predictions. Could wave-particle objectivity be
tested more generally, using causal assumptions rather than
specifically tuned models? Furthermore, can we devise a DI
proof of the nonclassical behavior of a delayed-choice
experiment without the need for entanglement (or the
violation of a Bell inequality)?
In this Letter, we employ tools from the field of causal

inference [13] to give a positive answer to these questions.
We propose that WDCE can be described by a DI “prepare-
and-measure” scenario [14]. In this framework, the only
relevant constraint on the classical model being tested is its

FIG. 1. In Wheeler’s delayed-choice gedanken experiment, the
choice of removing or not the beam splitter BS2 in a Mach-
Zehnder interferometer is made after the photon has entered the
interferometer (at BS1). With BS2 present, the photon counting
rate at either detector is a function of ϕ; when absent, the counting
rate is independent of ϕ.

PHYSICAL REVIEW LETTERS 120, 190401 (2018)

0031-9007=18=120(19)=190401(6) 190401-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.190401&domain=pdf&date_stamp=2018-05-07
https://doi.org/10.1103/PhysRevLett.120.190401
https://doi.org/10.1103/PhysRevLett.120.190401
https://doi.org/10.1103/PhysRevLett.120.190401
https://doi.org/10.1103/PhysRevLett.120.190401


dimension, which leads us to suggest replacing wave-
particle objectivity by the assumption that the hidden
variable (HV) has the same dimension as the quantum
system under test. We demonstrate that—contrary to
intuition—a two-dimensional classical variable can explain
the outcomes of WDCE (and of the QDCE). We then
propose a delayed-choice experiment where, instead of
removing BS2, the experimenter can chose to slightly
displace it, imparting a relative phase shift on the beam.
Using previously derived dimension witnesses inequalities
[14,15], we can exclude any model where the classical
variable has at most two dimensions (assuming, e.g., the
values wave and particle). Since we only detect one mode
(we do not consider coincidences), our proposal tests the
nonclassicality of this system without needing to introduce
entanglement. Our proposal has the additional advantage of
being robust to arbitrarily small (but larger than zero)
detection efficiencies and to loss inside the interferometer,
making it specially suited for loophole-free experimental
implementations. Finally, we quantify how much retrocausal
influence would be needed to explain the observations.
The delayed-choice experiment from a causal perspec-

tive.—How does quantum behavior manifest in theWDCE?
On one hand, a single photon in an interferometer can, in
principle, exhibit spatial mode entanglement. On the other
hand, Wheeler’s argument did not appeal to spatial sepa-
ration, but to temporal causality: the state leaving the
interferometer exists in the causal future of the state it
possessed upon entry. This leads us to ask the question:
could quantum behavior manifest itself even between the
temporal parts of the WDCE, i.e., between the preparation
of its causes and the measurement of its effects?
We begin by reviewing some basic concepts in causal

modeling [13]. We use uppercase characters to denote
random variables and lowercase to denote their possible
values. Given a set of n experimental random variables
X1;…; Xn, a hypothesis about the causal relationships
between these variables can be represented by a directed
acyclic graph (DAG) with the variables as nodes. Each
arrow represents a direct causal influence of one variable
upon another, in the following sense: if PðXiÞ are the
parents (direct causes) of Xi in the DAG, then there exists
a local noise variable Ui (having no causes) and a deter-
ministic function fi such that xi ¼ fiðPðxiÞ; uiÞ [16].
Consequently, the joint probability distribution factorizes
as a product, pðx⃗Þ ¼ Q

n
i¼1 p(xijPðxiÞ), relative to the

DAG. The factorization of probabilities is a DI constraint,
as it depends only on the causal relationships described in
the DAG and not on the particular choices of functions and
noise variables ffi; uig. This simplifies the task of causal
hypothesis testing: if the observed probability does not
factorize according to the structure of the hypothesized
DAG, we can exclude any causal model based on that DAG
from being a valid explanation for our observation.
We propose that the causal relations inWDCE (Fig. 1) can

be represented by the DAG shown in Fig. 2(a). The variable
X determines the phase shift ϕx between the interferometer
arms. The variable Λ corresponds to the intrinsic state of
the photon upon entering the interferometer, just after the
phase ϕx. The values of Λ could correspond to possible
quantum states or to values of some hidden variable
encoding instructions for its future behavior (In Ref. [6],
for example, this would correspond to particle or wave). For
our purposes, only the dimensionality of Λ is relevant; its
interpretation is unimportant. Since the experiment involves
a single photon with two modes, which encodes only a
single classical bit [17], Λ should likewise be binary. That is,
we propose that the HV should not be able to encode more
classical bits than the quantum system it is supposed to
simulate. Assuming no retrocausal influences, the proba-
bility ofΛ respects pðλjx; yÞ ¼ pðλjxÞ, depending only onX
(plus, possibly, local noise). In particular, it cannot depend
on the delayed-choice Y, which determines the experimental
arrangement y ¼ 1when BS2 is present and y ¼ 0when it is
removed [18]. Finally, the variables D and E represent the
photon detectors and take the values d; e ∈ f1; 0g, depend-
ing whether the detector has clicked or not, respectively [19].
We will restrict our attention to the probability for the

detector D to click [23]. The causal model in Fig. 2(a)
implies that any observed distribution compatible with it
should factorize as

pðdjx; yÞ ¼
X
λ

pðdjy; λÞpðλjxÞ: ð1Þ

For comparison, let us compute the probabilities predicted
by quantum mechanics in this setup. We treat the photon in
the Mach-Zehnder interferometer as a two-level quantum
system in the path degree of freedom. The initial state
is a single photon in mode a. The state emerging from
the interferometer is denoted jΨðx; yÞi. In the Fock basis
jn̂dn̂ei at the output modes d, e, it has the form

FIG. 2. (a) The DAG representing the causal model for WDCE. (b) A causal model allowing for retrocausal influence from Y to Λ.
(c) The representation of the PAM scenario in terms of preparation and measurement devices (black boxes).
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jΨðx; 0Þi ¼ ð1= ffiffiffi
2

p Þðj01i þ eiϕx j10iÞ when BS2 is absent
and jΨðx;1Þi¼ cosðϕx=2Þj01i− isinðϕx=2Þj10i when BS2
is present. The probabilities pðdjx; yÞ for detector D to
click are therefore given by pðdjx; 0Þ ¼ 1=2 and
pð1jx; 1Þ ¼ 1 − pð0jx; 1Þ ¼ sin2ðϕx=2Þ, respectively.
In light of this formulation, we now reexamine argu-

ments put forward in Refs. [6,24] claiming that no hidden
variable model of the form (1) could account for the
quantum predictions of the QDCE. In that reference, it
is assumed that wave-particle objectivity implies λ ¼ wave
if and only if interference is observed, and λ ¼ particle
otherwise [6,24]. In the present notation, this assumption
would require Λ to be perfectly correlated with the variable
D. However, quantum mechanics predicts correlations
between D and the delayed-choice variable Y, and since
D is binary (the detector can either click or not in each run),
this leads to the conclusion that Λ is correlated with Y—but
this can only be explained by a retrocausal influence of Y
on Λ, which has been excluded by assumption. Our causal
analysis shows that the assumptions in the IT model are
trivially mutually inconsistent.
We now show that, absent any special assumptions

about the relationship of Λ to the detector response D,
we can reproduce the predictions of WDCE using a
classical two-valued hidden variable. We introduce a local
noise term UD for the detector D, such that pðdjy; λÞ ¼P

uDpðdjy; λ; uDÞpðuDÞ. Choosing

pðuD ¼ 0Þ ¼ pðuD ¼ 1Þ ¼ 1=2;

pðλ ¼ 0jxÞ ¼ 1 − pðλ ¼ 1jxÞ ¼ cos2
ϕx

2
;

pðdjy ¼ 0; λ; uDÞ ¼ pðdjy ¼ 0; uDÞ ¼ δd;uD ;

pðdjy ¼ 1; λ; uDÞ ¼ pðdjy ¼ 1; λÞ ¼ δd;λ; ð2Þ

one can verify that we recover the predictions of quantum
theory for any choices of the phases ϕx. Therefore, WDCE
can be explained by a classical causal model without the
need of retrocausality. In the Supplemental Material [25],
we show how this classical model can be extended to the
QDCE [6].
The delayed-choice experiment as a prepare-and-

measure scenario.—Given that there is a causal model
(hence, a hidden variable model) explaining WDCE, it is
natural to ask whether small modifications to the experi-
ment would allow us to rule it out. We will continue to
assume no retrocausality and that Λ is two dimensional.
First, we draw a correspondence to the device-independent
prepare-and-measure (PAM) scenario [14], shown sche-
matically in Fig. 2(c). In the PAM scenario, an initial black
box prepares different physical systems (upon pressing a
button labeled by x) that are then sent to a second black
box, where the systems are measured (upon pressing a
button labeled by y) and produce an outcome labeled
by d. The essential feature of the PAM scenario is that

quantum systems can produce statistical distributions that
can only be reproduced by classical systems of higher
dimensionality. In particular, there is a quadratic gap
between classical and quantum dimensions, as one can
devise situations where the statistics produced by a
(

ffiffiffi
k

p þ 1)-dimensional quantum system can only be repro-
duced by a classical system of at least kþ 1 dimensions
[15]. Moreover, the PAM scenario implies constraints
on the probabilities [27] that are equivalent to the causal
constraints of the delayed-choice experiment [Eq. (1)].
Therefore, general results pertaining to the PAM scenario
can be readily adapted to analyze the experiment. For
instance, for 2k preparations (choices of X) and k possible
measurements (choices of Y), the (k × k) matrix [15]

Wkði; jÞ ¼ pð2j; iÞ − pð2jþ 1; iÞ; ð3Þ

with pði; jÞ ¼ pðd ¼ 0jx ¼ i; y ¼ jÞ (0 ≤ i; j ≤ k − 1)
satisfies jDetðWkÞj ¼ 0 for any classical system of dimen-
sion ≤ k. In WDCE, we have k ¼ 2, since there are two
possible experimental arrangements and we aim to test a
classical model of dimension 2. The matrix of interest is
given by

W2 ¼
�
pð0; 0Þ − pð1; 0Þ pð2; 0Þ − pð3; 0Þ
pð0; 1Þ − pð1; 1Þ pð2; 1Þ − pð3; 1Þ

�
; ð4Þ

for which it can easily be verified that jDetðW2Þj ¼ 0 for the
statistics predicted by quantum theory. Thus, the experiment
cannot rule out a classical explanation such as the hidden
variable model we described earlier. Strikingly, as we show
next, by slightly modifying Wheeler’s scenario, we can
generate statistics that violate this dimensional witness and
thus prove in a device-independent manner the incompat-
ibility of a nonretrocausal hidden variable model with the
generated data.
In our proposed experiment, the interferometer is always

closed. Instead of removing BS2, we gently displace it such
that different measurement choices y now correspond to a
new phase shift σy applied just before BS2 (Fig. 3). From an
experimental perspective, absorbing σy into the preparation
phase shift ϕx has no effect on the photon counting rates.
However, to ensure that no retrocausality implies the
independence of Y and Λ, it is essential that Y lies in
the causal future of Λ and hence of X. Therefore, the choice
of phase σy must be delayed until long after the preparation
phase ϕx, which is applied shortly after the photon
passes BS1.
By considering this extra phase σy and allowing for

losses inside the interferometer, the statistics is given by
pðx; yÞ ¼ 1

4
ðT2

a þ T2
bÞ þ ðTaTb=2Þ cosðϕx − σyÞ, where

0 < Ta ≤ 1 and 0 < Tb ≤ 1 are the real transmittance
coefficients of each arm. In this case,
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DetðW2Þ ¼
T2
aT2

b

2
sin ðσ0 − σ1Þ sin

�
ϕ2

2
−
ϕ3

2

�

×

�
− cos

�
ϕ0 −

ϕ2

2
−
ϕ2

3

�

þ cos

�
ϕ1 −

ϕ2

2
−
ϕ3

2

��
: ð5Þ

Choosing ϕ0 ¼ 0, ϕ1 ¼ π, ϕ2 ¼ −π=2, and ϕ3 ¼ π=2,
we obtain that jDetðW2Þj ¼ T2

aT2
b sin ðσ0 − σ1Þ. If we make

σ0 ¼ π=2 and σ1 ¼ 0, we obtain jDetðW2Þj ¼ T2
aT2

b, that
is, the dimension witness is violated for any transmittance
strictly larger than zero. This test is also resilient to
detection inefficiencies. If our detector has efficiency η,
then pηðb¼0jx;yÞ¼ð1−ηÞþηpη¼1ðb¼0jx;yÞ. Inserting
this into W2, we see that jDetðWη

2Þj ¼ ηjDetðWη¼1
2 Þj. Even

though the violation is less at lower efficiencies η, it can, in
principle, be observed for any positive efficiency.
So far, we have also implicitly assumed that all noise

terms are independent, and in particular, that the hidden
variable Λ is independent of any noise term that might also
influence the output of the interferometer. However, such a
dependence would not be forbidden by causality, since we
could imagine that the output of the interferometer depends
on a noise variable Γ that exists prior to the preparation of
ϕx and Λ and therefore might affect Λ as well. One might
wonder whether it is possible to rule out hidden variable
models that allow this dependence. Surprisingly, it can be
done. To achieve this, we employ the dimension witness
(DW) inequality [14]

IDW ¼ hD00i þ hD01i þ hD10i − hD11i − hD20i ≤ 3; ð6Þ

where hDxyi¼pðd¼0jx;yÞ−pðd¼1jx;yÞ. This inequal-
ity involves three preparations and two measurements, and
its violation witnesses incompatibility with any HV model
of dimension 2, even in the presence of correlations

between the preparation and measurement devices, i.e.,
even when both Λ and the outcome of detector D
have access to shared information. Using the same setup
as above, we obtain hDixy¼TaTbcosðϕx−σyÞ. For
Ta¼Tb¼1, and choosing σ0 ¼ π=2, σ1 ¼ 0, ϕ0 ¼ π=4,
ϕ1 ¼ 3π=4, and ϕ2 ¼ −π=2, we obtain the optimum
quantum violation given by IQ ¼ 1þ 2

ffiffiffi
2

p
[28].

Quantifying retrocausality.—Altogether, our proposed
modification of WDCE can exclude in a DI manner all
nonretrocausal classical models with dimension d ¼ 2.
Conversely, if one allows retrocausality [see Fig. 2(b)],
any observed distribution pðdjx; yÞ could be simulated
classically. But how much retrocausality is actually needed
to reproduce the quantum predictions? To answer this, we
need to quantify the strength of the causal influence Y → Λ
in the DAG. Without this causal arrow, and allowing for
correlations between preparation and measurement devices
(described by a HV Γ), pðλjx; γ; yÞ ¼ pðλjx; γ; y0Þ. This
leads us to consider a measure of retrocausality given by

RY→Λ ¼ sup
λ;x;y;y0

X
γ

pðγÞjpðλjx; γ; yÞ − pðλjx; γ; y0Þj; ð7Þ

the maximum shift in the probability of the HV Λ produced
by changes in the measurement setting Y for a preparation
X (averaged over Γ, since we do not have empirical access
to it). As explained in [25], given an observed value of the
dimension witness IDW, the minimum value of RY→Λ
required to explain it is

minRY→Λ ¼ max

�
I − 3

4
; 0

�
; ð8Þ

thus showing that the maximal possible value of IQ ¼
1þ 2

ffiffiffi
2

p
allows one to exclude any retrocausal model

with RY→Λ ≲ 0.207.
Discussion.—The vague notion of wave-particle objec-

tivity has been analyzed in different ways by different
authors. For instance, Wheeler [1,2] associated wave and
particle notions to the possibility (respectively, impossibil-
ity) of a photon being in a path superposition inside the
interferometer. In turn, the IT model [6] associates wave
and particle notions with the statistics obtained at the
detectors, implying the label wave if the statistics depend
on the phase shift ϕ and particle otherwise. This inter-
pretation may be criticized for implying that λ ¼ wave
cannot produce statistics independent of ϕ, whereas in an
open interferometer this is precisely what we would expect
from a classical wave. Furthermore, it implies a correlation
between Λ and the detector D which, as we showed using
causal modeling, makes it trivially incompatible with the
quantum predictions and no retrocausality.
To avoid the difficulties arising from particular inter-

pretations of wave-particle objectivity, one could consider
different ways of describing delayed-choice experiments.

FIG. 3. Our proposed modification of WDCE, which can be
used to discard two-dimensional HV models. The gray dashed
lines allude to Fig. 2(c). In addition to a phase shift ϕx in the
preparation stage, another phase shift σy is applied after the single
photon has entered the interferometer, for instance, by slightly
moving BS2.
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In Ref. [9], it was shown that a simple argument based on
causal models could provide conceptual insights into
entanglement-assisted delayed-choice experiments (see
[25]). We have shown that causal models can also shed
light on the simpler experiments proposed byWheeler [1,2]
and the quantum variants proposed in Refs. [6,7].
We argued that, regardless of any categorization as a wave

or particle, any predefined classical state of the photon that
is supposed to reproduce the results of WDCE or QDCE
should have two values, corresponding to the dimension of
the quantum system being probed. This holds for both the
Wheeler and IT models’ conception of wave-particle objec-
tivity, and indeed both can be cast as two-dimensional
classical hidden variable models. By taking the dimension-
ality to be the main relevant feature, we showed that these
models could be excluded using DI methods, provided the
experiment is modified such that BS2 is always present.
Since wavelike behavior (interference) is always present in
our experiment, our approach does not rely on making
any kind of wave or particle distinction: we merely probe
how much information must be conveyed by a classical
variable in order to produce the observed interference. In
this respect, our proposal is conceptually distinct from
previous approaches. Moreover, our results extend to any
two-dimensional hidden variable, whether it be a wave, a
particle, or something queer in between.
This gives us a new perspective on what is counterin-

tuitive in delayed-choice experiments: the fact that any
classical explanation requires a variable with more dimen-
sions than its quantum counterpart or else requires retro-
causal influences. Our results also show the benefits of
viewing quantum phenomena from a causal perspective.
For applications, since the PAM scenario plays an impor-
tant role in recent work on quantum key distribution
[29–31], our Letter suggests that interesting quantum
information protocols could be performed with setups as
simple as a Mach-Zehnder interferometer.
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investigation.
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