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We study the fundamental question of the lattice dynamics of a metallic ferromagnet in the regime where
the static long-range magnetic order is replaced by the fluctuating local moments embedded in a metallic
host. We use the ab initio density functional theory + embedded dynamical mean-field theory functional
approach to address the dynamic stability of iron polymorphs and the phonon softening with an increased
temperature. We show that the nonharmonic and inhomogeneous phonon softening measured in iron is

a result of the melting of the long-range ferromagnetic order and is unrelated to the first-order structural
transition from the bcce to the fcc phase, as is usually assumed. We predict that the bcc structure is
dynamically stable at all temperatures at normal pressure and is thermodynamically unstable only between

the bee-ar and the bee-6 phases of iron.
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The theoretical description of the interplay between
structural, magnetic, and electronic degrees of freedom
in transition metals at finite temperatures is a central
problem of condensed matter physics. The elemental iron
is the archetypical system to study the coupling of the
ferromagnetism and electronic degrees of freedom with
crystal structure, and its importance in both geophysics at
high temperatures and high pressures and metallurgy at
normal pressure but a finite temperature has made iron one
of the most thoroughly studied materials. Its magnetic and
mechanical properties undergo major changes through a
series of structural phase transitions, but a clear under-
standing of the feedback effect of magnetism on the
structural stability has been elusive.

Elemental iron crystalizes in four different polymorphs;
among them are two body-centered cubic (bcc) phases and
a face-centered-cubic (fcc) phase, all realized at normal
pressure. The bee-ar phase is stable below 1185 K; the fcc-y
phase follows and is stable up to 1670 K, where it is
transformed to the bcc-6 phase, which is stable up to the
melting point around 1811 K. The a phase is ferromagnetic
(FM) below the Curie temperature 7. = 1043 K.

Many theoretical methodologies to describe the ener-
getics of magnetic materials, and the stability of different
allotropes, have been developed over the past few decades.
The conventional density functional theory (DFT), in its
generalized gradient approximation (GGA), predicts quite
well the magnetic properties of the FM bcc structure with
the correct moment and good bulk modulus and quite
accurate phonon spectra. However, the GGA severely
underestimates the stability of the competing nonmagnetic
fcc phase, which is around 300 meV higher in energy than
the FM bcc phase and is predicted to be dynamically
unstable in its nonmagnetic phase, with many imaginary
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phonon branches [1]. Similarly, the high-temperature bce-6
phase is dynamically and thermodynamically unstable
within this standard approach.

To simulate the interplay between the lattice dynamics
and the presence of magnetic moments at a finite temper-
ature in a metallic environment, several approaches have
been developed, which broadly fall into three categories:
(i) considering static magnetic configurations within the
DFT, but disordered in real space [2-5], (ii) supplementing
DFT energetics by some information obtained by an
auxiliary Heisenberg model, which is exactly solved by
the quantum Monte Carlo method [5,6], (iii) dynamic
many-body approaches, such as the dynamical mean-field
theory (DMFT), which simulate the dynamics on a single
site exactly but neglect the exchange-correlation energy
between different iron sites [7-9].

To mimic the presence of local moments within the
static DFT, Kormann et al. [3] developed a methodology
for calculating phonon frequencies at very high temper-
atures in a real-space large unit cell disordered simulation,
by employing space averaging within the constrained spin
DFT. This approach is closely related to special quasiran-
dom structure methodology [10]. They showed that, in such
areal-space disordered state, both the bee and fce structures
become dynamically stable and that phonons are consid-
erably softer in this high-temperature state than in a
ferromagnetic state. Ikeda et al. [2] used the same method
to study the pressure dependence of phonon spectra.
Kormann er al. [5] later extended this method to treat
the paramagnetic phase as a function of the temperature
using an auxiliary Heisenberg model simulation. It was
shown that such an approach can describe reasonably well
the temperature-dependent phonon softening measured in
experiments [11,12].
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A related method, based on large unit cell DFT calcu-
lations, was used in Refs. [4,13] to study the pressure and
temperature dependence of phonon spectra. In this method,
the disorder in atomic positions is coming from thermal
vibrations of the lattice rather than from the disorder in spin
orientations; hence, it includes anharmonic effects due to the
phonon-phonon interaction. It was noticed in Ref. [13] that
nonmagnetic disordered state simulations predict both bcc
and fcc structures to be dynamically unstable. However,
when the simulation is performed in the fictitious long-range
antiferromagnetic state, the results are in good agreement
with experiments, even when structural disorder is switched
off. The inclusion of lattice dynamical effects improved the
agreement with experiments slightly, but it is clearly not the
main force in stabilizing the high-temperature phases of iron.
It was thus shown that the presence of magnetic moments,
and their role in lattice energetics, is far more important than
the thermal disorder in lattice position.

While the above-described studies based on DFT static
simulations but with the inclusion of real-space spin
disorder are broadly consistent with experimental measure-
ments, their validity relies on the ergodicity of the quantum
metallic system. The local fluctuating magnetic moments
are disordered in time rather than space, as their Bragg
peaks do not show extra broadening beyond standard
thermal disorder; hence, the proper treatment of fluctuating
moments has to be dynamic. With the advent of the DMFT
and its combination with the DFT, the nature of electrons
which are partially itinerant, forming metallic bands in iron,
and partly localized, giving rise to Curie-Weiss suscep-
tibility, could finally be simulated from ab initio [14].

The energetics of the bcc to fce transition in iron has been
addressed by the DMFT method in Ref. [15] and was later
extended to study lattice dynamics in the paramagnetic state
of bee and fec structures [16], but the lattice dynamics of the
ferromagnetic state has not been addressed before. Moreover,
the authors of Ref. [17] recently ascribed the previously
observed phonon softening at the N point in the Brillouin
zone [11,12] to the correlation effects changing with the
temperature in the paramagnetic state of the system [17]. They
predicted that the paramagnetic bcc structure becomes
dynamically unstable between 1.2 and 1.4 times the Curie
temperature (close to the a to y transition in iron) and gets
progressively more unstable in most branches as the temper-
ature is increased, so that the bee-6 phase would require a large
phonon-phonon interaction to be dynamically stabilized.
Consequently, they conclude that the a-y transition in iron
occurs due to this phonon softening at the N point.

So far, the phonon calculations by the DMFT [16-18]
were performed only in the paramagnetic state. On the
other hand, the DFT-based methods [2,13] always require
some sort of static order; hence, the effects of melting the
long-range magnetic order with the temperature, and the
impact of partially ordered and disordered local magnetic
moments on phonons was not properly addressed before

and is the focus of this study. Moreover, previous
DFT + DMFT calculations for iron [16,17] were using a
nonstationary implementation of DFT 4+ DMFT total
energy expression, which is based on the intermediate
downfolded auxiliary Hubbard model, and hence the force
does not appear as a derivative of a stationary functional.
The stationary implementation of the DFT + embedded
DMEFT functional has recently been achieved [19], and its
analytic derivative, which gives rise to the force, was
derived in Ref. [20]; hence, the force contains the effects
of electronic and magnetic entropy, missing in the previous
DMFT approaches. The resulting phonon dynamics,
which includes the effects of finite-temperature electronic
and magnetic entropic effects, is hence more trustworthy in
the high-temperature paramagnetic phases than previous
reports.

The physical picture emerging from this state of the art
computational technique is very different from previous
DMEFT reports. (i) The first-order phase transition from the
alpha to the gamma phase is unrelated to the observed
phonon softening in iron. (ii) The experimentally observed
softening of phonons and their nonharmonic change is a
consequence of the melting of the long-range ferromagnetic
order, and, once the paramagnetic state is reached, the
change of the phonons with the temperature is reasonably
well explained by the quasiharmonic approximation.
(iii) The bec state remains dynamically stable at all temper-
atures, even though the fcc state is thermodynamically the
stable phase between the @ and & phases. Consequently,
the phonon-phonon interaction is not needed to make the
high-temperature bce-6 phase dynamically stable.

In this Letter, we use the stationary version of the
DFT + embedded DMFT method [7,21,22], in which the
forces are derivatives of the stationary free energy func-
tional with respect to ion displacement [20]. The continu-
ous time quantum Monte Carlo calculation in its
rotationally invariant form is used as the impurity solver
[23,24]. The screened value of the Coulomb interaction is
determined by the constrained local-density approximation
(LDA) method resulting in U =5.5eV and Hund’s
exchange interaction J = 0.84 eV [25], and we used
nominal double counting, which was shown to be very
close to exact double counting [26]. The DFT part is based
on the Wien2k package [27], and we use the LDA
functional which, when combined with the DMFT, predicts
better crystal structures. This is because in the LDA
functional both the electronic bandwidth and equilibrium
lattice constants consistently show signatures of overbind-
ing and can both be corrected by adding dynamic corre-
lations, while in GGA the bandwidth shows a similar
overbinding tendency, while lattice constants many times
shows an underbinding tendency; hence, they are harder to
simultaneously correct by a higher-order theory. The
phonon spectrum is calculated using the direct approach
as implemented in the phonopy package [28].
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FIG. 1. (a) The electronic free energy per atom versus V of a
cubic unit cell. (b) The temperature dependence of the ordered
ferromagnetic moment of bec iron using both the density-density
(“Ising”) and the rotationally invariant (“full”) Coulomb inter-
action form. (c) The single-particle spectral function of the bce-a
phase at 300 K (the majority and minority spectra are plotted in
blue and red, respectively).

In Fig. 1(a), we show the free energy versus the volume
of a bce unit cell at room temperature, which gives the
equilibrium volume 11.9 A® and bulk modulus 181 GPa,
which are in good agreement with experimental values of
11.69 A3 [29] and 172 GPa [1]. Figure 1(b) shows the
magnetization versus the temperature curve, which follows
the mean-field type of behavior and gives an almost
exact magnetic moment 2.2up. The transition temperature
(T = 1550 K) in this direct calculation is overestimated,
as expected for a method which treats spatial correlations
on a mean-field level; consequently, the phase with short-
range order is typically predicted to have stable long-range
order. We also show the same magnetization curve for the
case when the Coulomb interaction is approximated with
the density-density terms only (Ising approximation) to
demonstrate that such an approach, which was previously
used in Refs. [15-17], leads to a much higher transition
temperature and a somewhat larger magnetic moment. This
effect was also noticed in Refs. [30,31] using the Hirsch-
Fye quantum Monte Carlo method but was neglected in
previous studies of lattice dynamics. In Fig. 1(c), we also
show the electronic spectral function at 300 K, which is in
very good agreement with angle-resolved photoemission
spectroscopy (ARPES) measurement of Ref. [32] (see
Supplemental Material [33] for more detail, which includes

additional Refs. [34-64]), in contrast to earlier DMFT
calculations based on approximate impurity solvers [65].
We note that a similar magnetization curve for iron was
shown in Ref. [14] using a reduced temperature and a
reduced moment, but here we show that the same inter-
action parameters lead to a very precise absolute value of
the magnetic moment and the correct equilibrium lattice
constant, as well as the correct renormalization of the
electronic band structure, as measured by ARPES.

In Fig. 2, we show the phonon spectra calculated in the
three bce phases of iron, in the ferromagnetic state at room
temperature, in the paramagnetic « state slightly above the
Curie temperature (1.1257,), and in the bcc-6 phase at a
high temperature, and we compare it to the measured
spectra from Refs. [11,66,67]. They are compared at the
same scaled temperature 7/T, in the FM state, as T, is
overestimated in our calculation, while in the paramagnetic
state (7'~ 1800 K) we use the absolute temperature,
because the electronic structure above 7, depends pri-
marily on the lattice constant (which is taken from the
experiment). We notice a reasonable agreement between
the theory and experiment and a slight deviation around
the H point. Notice also that the paramagnetic (1.1257 )
solution within the standard DFT has many unstable
branches [16], which are here stabilized by a proper
description of the fluctuating moments existing above 7.

Next, we show in Fig. 3(a) the temperature dependence
of the theoretically obtained phonon spectra in the bcc
phase from a low temperature through the magnetic
transition and up to the a-y transition. We notice a very
strong softening of the lowest branch at the N point, which
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FIG. 2. Phonon spectrum at a low temperature (7 = 300 K), in
the paramagnetic bcc-a phase (T = 1.1257.) and in the para-
magnetic bee-0 phase (7 = 1800 K) evaluated at experimental
lattice constants. The dots correspond to the experimental data
from Refs. [11,66,67] at 300 K, 1.125T,., and T = 1743 K,
respectively.
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FIG. 3. (a) The calculated phonon dispersions in the bcc-a

phase below and above the Curie temperature at an experimental
equilibrium volume. (b) Phonons in the metastable paramagnetic
bce phase, but at a constant volume (experimental volume at
T=T,).

was shown to similarly soften experimentally in
Refs. [11,12], as well as a substantial softening in the half
distance between the H and P points. The arrows on the
right mark the strong temperature variation of some phonon
branches. All these trends are very consistent with experi-
ments. In Fig. 3(b), we show a phonon dispersion when
the same calculation is done in a metastable paramagnetic
state below T, where experimentally only the ferromag-
netic state is stable, and also far above T, in which the fcc
phase is thermodynamically more stable than the simulated
bce phase. In this paramagnetic calculation, we fixed the
volume to remove trivial quasiharmonic effects on the
phonon dispersion. We see that the phonon dispersion
remains very similar up to a very high temperature.

Figure 4 shows the temperature dependence of selected
phonon-branch frequencies and their comparison to the
quasiharmonic approximation (blue dashed line), which
takes into account only the volume expansion. We notice
the inadequacy of such an approximation, while the DMFT
prediction, with melting of the long-range order, is in
reasonable agreement with the experiment from Ref. [12].
The experimental change is somewhat less abrupt at 7',
likely because the short-range order persists above 7. in
the experiment.

On the basis of these results, we can conclude that
phonon softening, discovered experimentally many years
ago [11,69], is mainly due to the melting of the magnetic
long-range order and is not related to the @ — y phase
transition, in contrast to what has often been assumed [11]
and concluded in the previous DMFT study [17]. In our
view, both the paramagnetic bcc and the fcc phase are
dynamically stable at all temperatures, and their relative
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FIG. 4. The change of the phonon frequencies for representa-
tive modes with the temperature calculated by DFT 4+ DMFT (red
dots) compared to experimental data (green triangle). The dashed
blue lines denote the change predicted by the quasiharmonic
model: @™ (T) = @ *(1 - yy)(Vr = Vaoox/V3ook), Where
@K is the calculated value of the phonon frequency at
300 K, V7 is the experimental volume of the unit cell at
temperature 7, and yg is the thermal Griineisen parameter,
approximated by a constant value of 1.81, as suggested in
Refs. [12,68].

stability has to be determined by comparing their respective
free energies.

Since our results suggest that the phonon-softening
mechanism in iron is unrelated to the a-y structural
transition, we want to demonstrate that our theory correctly
predicts the thermodynamic competition of the two phases
(see related work in Refs. [15,70]). The martensitic a-y
transformation is usually modeled by a continuous crys-
tallographic transition from the initial to the final phase,
and in the case of a bee-fee transition the Bain path [71] is
most often picked, which is described by a single parameter

¢/a with ¢/a = 1 corresponding to the bee and ¢/a = V2
to the fcc phase. In Fig. 5, we show the total energy along
this path, which clearly shows the double-well profile,
characteristic of the first-order phase transition, that does
not require softening of the phonons for the existence of the
phase transition. At low temperatures (7" = 300, 1000 K),
the global minimum is at the bce structure (¢/a = 1), and at
a high temperature (7" = 1547 K), it is at the fcc structure
(c/a = v/2). Along the path, the ferromagnetic long-range
order disappears in our simulation, and at that value of ¢/a
(yellow region) the double-well curve reaches a maximum.
At a high temperature (7" = 1547 K), where the ferromag-
netic long-range order disappears for all values of ¢/a, the
total energy still keeps the double-well shape with a very
small total energy difference between the bcc and fcc
phases (20 meV), in contrast to the DFT prediction, which
has a single minimum with both the magnetic and non-
magnetic functionals.
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FIG. 5. (a) The total energy computed along the Bain

crystallographic transition from the bcc to the fcc phase in
the FM state. Note that at 7 = 1547 K the FM and PM phases
are indistinguishable. (b) The ordered ferromagnetic moment
along the same path.

The importance of disordered localized magnetic
moments in paramagnetic phases of iron was stressed early
on in the pioneering work of Grimvall [72]. This physics
now emerges from a quantitative first principles method,
and its implications for many physical quantities has been
elucidated. We predict that the softening of the phonons in a
bcce structure is not related to its first-order a to y transition,
but it is due to the melting of the long-range magnetic order.
Our prediction can be checked by measuring the phonon
dispersion of paramagnetic iron under an applied magnetic
field, to check that long-range magnetic order in the field
hardens the phonons at selected points in the Brillouin
zone. We predict that the bee structure is dynamically stable
at all temperatures and is thermodynamically unstable only
due to lower free energy of the fcc-y phase at the
intermediate temperatures between the o and the § phase.
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