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The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of
frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group
(DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads
to a spin liquid for J2=J1 ∈ ð0.08; 0.15Þ. In addition, a DMRG study of a dipolar Heisenberg model with
longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈ ½0; 10°Þ. In both
cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice
dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region,
θ ∈ ½0; 54°Þ, for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the
model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing.
The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and
spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases
with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in
ultracold dipolar molecules.
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Quantum spin liquids evade conventional long-range
order or symmetry breaking down to zero temperature
[1–4]. These highly entangled states have unique properties,
including possible topological order or fractional excita-
tions. Theoretically, the existence of certain spin liquid states
is firmly established from exactly solvable models [5,6].
While powerful numerical methods, such as the density
matrix renormalization group (DMRG) and tensor networks
(TN), have yielded clear evidence for spin liquids in
geometrically frustrated spin models, including the kagome
lattice spin 1=2 Heisenberg model [7,8] and the triangular
lattice J1 − J2 Heisenberg model [9,10], the very nature of
these spin liquids remains controversial. Experimentally,
two classes ofmaterials, herbertsmithite [11],with a kagome
lattice structure, and triangular lattice organic compounds
[12–14], have emerged as strong candidates for quantum
spin liquids. In the continuing search for spin liquids, it is
useful to examine other model spin systems that are
experimentally accessible.
A new class of quantum spin models, dubbed the dipolar

Heisenberg model, with long-range exchange interactions
was recently predicted to harbor spin liquids. Thismodel can
be realized using polar molecules confined in deep optical
lattices [15–18]. Similar spin models with tunable range
and anisotropy have also been experimentally demonstrated
with cold atoms with large magnetic moments [19],
Rydberg-dressed atoms [20,21], and trapped ions [22,23].
These experiments thus motivate the exploration of the
phase diagrams of dipolar Heisenberg model. Compared to
the J1-J2 model, further range exchanges compete and

sometimes enhance frustration. For example, TNcalculation
shows a narrow region of the paramagnetic phase on the
square lattice [24], which is also supported by RG analysis
[25]. In Ref. [18], the DMRG predicts a spin liquid phase on
the triangular lattice for θ between 0 and 10 degrees, where
the dipole tilting angle θ controls the spatial anisotropyof the
exchange. The spin liquid regions however seem small for
both lattices. In addition, both DMRG and TN are limited
to small lattice sizes: the range of interaction has to be
truncated, and a small cluster is insufficient to accommodate
the spiral order, which has an incommensurate wave vector
and occupies much of the classical phase diagram. An
independent, alternative approach is needed.
In this Letter, we provide compelling evidence that the

spin liquid region of the dipolar Heisenberg model can be
expanded by fivefold, to θ ∈ ½0; 54°Þ, by tilting the dipoles
toward the diagonal of the triangular lattice. Our idea
exploits the tunable anisotropy available in experiments, to
suppress the stripe phase and to arrive at a simple phase
diagram that contains the quantum paramagnetic phase and
the spiral phase, see Fig. 1(d). We argue that the quantum
paramagnetic phase is a spin liquid by comparing it to a
DMRG. We further obtain the full phase diagram for
arbitrary dipole tilting (Fig. 2) using a numerical functional
renormalization group that is capable of handling long-
range interactions and spiral order using large cutoffs for
the interaction range.
Dipolar Heisenberg model and its classical phases.—

Consider dipolar molecules localized in a deep optical
lattice. Two rotational states of the molecule can be isolated
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to play the role of pseudospin 1=2. The dipole-dipole
interaction induces long-range exchange interactions of the
Heisenberg form (see Refs. [17,18,24] for details)

H ¼
X

i≠j
JijSi · Sj; ð1Þ

where the sum is over all pairs of sites in a triangular lattice,
and Si ¼ ðSxi ; Syi ; Szi Þ are spin half operators at site i. We
assume one molecule per site, and all of the dipole
moments are oriented along a common direction d̂, set
by an external electric field. In terms of the polar angle
θ and the azimuthal angle ϕ as shown in Fig. 1(a),
d̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ. The exchange interac-
tion then takes the dipolar form

Jij ¼ J0½1 − 3ðr̂ij · d̂Þ2�=r3ij; ð2Þ

where rij ¼ ri − rj for spins at sites ri and rj. Here, the
lattice constant is taken to be unity, and the energy unit is
given by J0, the leading dipolar exchange.
The dipolar Heisenberg model, Eqs. (1)–(2), is severely

frustrated. In addition to the lattice geometric frustration,
various (the nearest, second, and further neighbor)
exchanges, with their relative magnitude and sign con-
trolled by dipole tilting [Fig. 1(c)], prefer different, com-
peting long-range orders. To appreciate the possible orders,
we first solve this model for classical spins [26]. Consider
for example the case of ϕ ¼ 0, i.e., d̂ tilting along the x

axis, and varying θ. From θ ¼ 0° to ∼20°, it has the familiar
120° order. The stripeorder takes over for θ ∈ ð20°; 60°Þ,with
the spins aligned along x but alternating (S → −S) along y.
For all other θ values, the classical ground state is a spiral with
an incommensurate wave vector qðθ;ϕÞ. As ϕ is increased,
the stripe phase shrinks and eventually vanishes. It is largely
dictated by symmetry: stripes along the lattice direction
would break the reflection symmetry of the Hamiltonian
with respect to the ẑ − d̂ plane and cost energy. This trendwill
continue to hold in the quantum phase diagram. The energy
minima of the spiral and the 120° phase are very shallow, a
symptom of frustration [26]. As wewill show below, they are
easilymelted byquantum fluctuations, leading to a drastically
reconstructed phase diagram, Fig. 1(d).
Pseudofermion FRG.—To find the phase diagram of the

quantum dipolar Heisenberg model, one needs an accurate,
unbiased many-body technique that can treat the spiral
order, long-range interactions, and large lattices. A func-
tional renormalization group (FRG) is well suited for this
purpose. It starts with the bare interaction, and it system-
atically integrates out the high energy, short wavelength
fluctuations to track the flow of the effective action func-
tional. Under the flow, toward lower energy and a longer
wavelength, the leading many-body instability emerges as
the dominant divergence. We follow the pseudofermion
FRG (pf-FRG) put forward by Reuther and Wölfle, which
has been extensively benchmarked against other methods
and applied to frustrated spin models [29–36]. The spin
model Eq. (1) is first rewritten in a fermionic representation
via Si ¼ 1

2
σαβψ

†
αiψβi, where ψ’s are fermionic field oper-

ators. The resulting interacting fermion problem is then
solved using the well-established fermionic FRG developed
for strongly correlated electrons [37–40]. Specifically,
vertex expansion up to a one loop order yields the flow
equations for the fermion self-energy Σ and the effective
interaction vertex Γ as functions of the sliding RG scale Λ,

∂ΛΣðω1Þ ¼ −
X

2

Γ1;2;1;2Sðω2Þ; ð3Þ

∂ΛΓ10;20;1;2¼
X

3;4

Πðω3;ω4Þ
�
1

2
Γ10;20;3;4Γ3;4;1;2−Γ10;4;1;3Γ3;20;4;2

þΓ20;4;1;3Γ3;10;4;2

�
: ð4Þ

Hereafter, the Λ dependence of Σ, Γ, G, S, etc. is omitted
for brevity, and we use the shorthand notation Γ10;20;1;2 ≡
Γði1; α1;ω1; i2; α2;ω2; i01; α

0
1;ω

0
1; i

0
2; α

0
2;ω

0
2Þ with site index

i, spin α, and frequency ω. The sum denotes integration
over ω as well as summation over lattice sites and spin. The
scale-dependent propagators are defined by

GðωÞ ¼ Θðjωj − ΛÞ
iωþ ΣðωÞ ; SðωÞ ¼ δðjωj − ΛÞ

iωþ ΣðωÞ : ð5Þ

(a) (b)

(c)

(d)

FIG. 1. A dipolar Heisenberg model on the triangular lattice
in the xy plane. (a) The exchange Jij depends on the dipole
orientation d̂, with a polar angle θ and an azimuthal angle ϕ.
(b) High symmetry points within the Brillouin zone. (c) The
competing exchange couplings Jij (site i is at the origin) for
ϕ ¼ 30° and θ ¼ 0°, 45°, and 90°, respectively. The size of the
circle indicates the magnitude of Jij, with positive (negative) Jij
shown in blue (orange). (d) The zero temperature phase diagram
at ϕ ¼ 30° includes a wide quantum paramagnetic phase,
θ ∈ ½0; 54°Þ, and a spiral phase.
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Note that the bare fermion propagator only has frequency
dependence, Gð0ÞðωÞ ¼ 1=iω [41]. Equation (4) includes
the particle-particle, the particle-hole, as well as the
exchange channel, as shown by the following diagrams:

We adopt an improved truncation scheme beyond one loop
[42], where bubble Π is given by the full derivative

Πðω3;ω4Þ ¼ −
d
dΛ

½Gðω3ÞGðω4Þ�: ð6Þ

The first order nonlinear integro-differential equations in
Eqs. (3) and (4) are supplemented by the following initial
conditions at the ultraviolet scale ΛUV → ∞,

ΣðωÞjΛUV
¼ 0;

Γ1;2;10;20 jΛUV
¼ 1

4
σμα1α01

σμα2α02
Ji1;i2δi1i01δi2i02 − ð10 ↔ 20Þ: ð7Þ

We numerically solve the coupled flow equations
Eqs. (3)–(4) together with the initial condition Eq. (7)
and the dipolar exchange Eq. (2) using the fourth order
Runge-Kutta, for a logarithmic frequency grid of Nω

frequencies, by taking NΛ RG steps from bare scale ΛUV
down to zero. We keep all couplings Γ within an NL × NL
parallelogram on the triangular lattice [26]. The computa-
tional cost scaleswithNΛN2

LN
4
ω.We perform simulations up

to NL ¼ 13, Nω ¼ 64, and NΛ ¼ 4Nω, i.e., four RG steps
between two neighboring frequency points. Following the
efficient spin and frequency parametrization scheme of
Ref. [29], and exploiting the reflection symmetry of H,
we still end up with over 22 × 106 coupling constants (Γs).
To make the calculation tractable, the FRG code is designed
to run parallel on thousands of graphic processing units. We
have benchmarked it and found a good agreement with
known FRG results on the square [29] and triangular [36]
lattice J1-J2 model.
FromΓ andΣ, we compute the static spin-spin correlation

functions in real space and then use a Fourier transformation
to obtain the spin susceptibility χðpÞ [29]. Let χmax be the
maximumvalue of χ reached atwavevectorp ¼ pmax within
the Brillouin zone shown in Fig. 1(b). Together, χðpÞ and
pmax offer clues about the onset or lack of long-range order
under the FRG flow. Typically χmax displays Curie-Weiss
behavior for Λ ≫ 1 until the build-up of quantum correla-
tions starts to kick in around Λ ∼ 1. An instability towards
long range order is signaled by the divergence of χmax at
some critical scale Λc < 1. The finite cluster size and the
truncation and discretization regularize the divergence, and
replace it with unstable, irregular, and oscillatory flows
belowΛc. Despite this, the breakdown of the smooth flow is
unmistakable, and the type of incipient order can be inferred

from the location of pmax. It may also happen that the flow of
χ remains stable and smooth down to the lowest RG scale
Λ → 0. Then the system settles into a paramagnetic phase.
To orient the full FRG solution and compare it with the

classical results, we first carry out a static FRG, i.e., solving
the flow equations by ignoring all ω dependences [26,43].
This approximation was shown to be consistent with a
random phase approximation and the Luttinger-Tisza
method [43]. From the flow of Γ, we extract a “critical
scale” Λs, at which the maximum value of Γ reaches a large
cutoff value (diverges). Thus, Λs serves as a rough estima-
tion of the critical temperature for the long-range order.
Figure 2 shows the resulting Λs in false color with contour

FIG. 2. A zero temperature phase diagram of the dipolar
Heisenberg model on a triangular lattice as a function of the
dipole tilting angle (θ, ϕ), showing the quantum paramagnetic
(PM), stripe, and spiral phases. The solid and dashed white lines
are the phase boundaries (see main text). The color contours show
estimated critical temperature Λs from static FRG. Spin suscep-
tibility profiles χðpÞ at scale Λ < 0.5 are shown in the middle
panels for representative points marked with P1, M1 etc. The
flows of peak susceptibility χmax are shown in the bottom panels.
For M1 and M3, the flow becomes unstable below some RG
scale indicated by the arrows.
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lines. Here, we find a good agreement with the classical
analysis. The 120° order, where χ shows the maxima at the
corners of the Brillouin zone, lies at small θ. For an
increasing θ, peaks at K and K0 come together and merge
at theM point, indicating the stripe phase. For an even larger
θ, the peak at M moves towards the Γ point, signaling the
spiral order. Figure 2 also shows that the spiral phase has the
largestΛs (in green), whereasΛs is significantly suppressed
(in dark blue) in the region around θ ∼ 15° and near the phase
boundaries. These dark areas are where the spin liquid is
suspected to reside.
Phase diagram from pf-FRG.—Solving the flow equa-

tions with full frequency dependence along multiple cuts
on the ðθ;ϕÞ plane and examining the flow of χmax and the
profile of χðpÞ in momentum space, we arrive at the zero
temperature phase diagram of the dipolar Heisenberg
model on triangular lattice shown in Fig. 2. The solid line
and the dashed line mark the phase boundary between three
major phases: the stripe, the spiral, and the quantum
paramagnetic (PM) phase. The most striking result from
pf-FRG is the abundance of the PM phase. A large portion
of the classical spiral, including the 120° order, completely
melts due to strong quantum fluctuations and gives way to
quantum paramagnet. Compared to the J1-J2 Heisenberg
model, which shows a narrow region of spin liquid between
the 120° and stripe order [9,10], here, the long-range dipolar
exchanges suppress the 120° order to favor a disordered
state. Our result agrees with an earlier DMRG study of the
dipolar Heisenberg model for ϕ ¼ 0 with truncated inter-
actions [18]. Both predict a spin disordered phase for θ < θc,
with θc ∼ 19° from the pf-FRG and θc ∼ 10° from the
DMRG. Our new insight is that the PM phase becomes
much broader, θc ∼ 54°, if we tune ϕ to 30° to suppress the
stripe phase.
Now we discuss the pf-FRG results for a few represen-

tative points on the phase diagram. Let us start with point
P1 in Fig. 2, θ ¼ 10°, ϕ ¼ 5°. The spin susceptibility
profile χðpÞ at Λ ≈ 0.2 is shown in the middle panel. It
peaks atK andK0, indicating the 120° correlations. There is
however no long-range order. We find instead a remarkably
smooth flow of χmax down to Λ → 0 without any sign of
instability in the bottom panel of Fig. 2. Note that small
fluctuations at small Λ are artifacts due to the frequency
discretization and they diminish with a finer grid. Similar
PM behaviors are observed for points P2 and P3 at larger
values of ϕ, with the χðpÞ profile tilted accordingly. These
are our most significant findings.
Moving from point P1 towards M1, the peaks at K and

K0 first become flatter and eventually coalesce at θ ¼ 17°.
Here, χmax shows a massive degeneracy in p space: it peaks
along the entire K-K0 line. Beyond this point, the flow of
χmax shows increasing jumps at small Λ, and a kink (or
turning point, indicated by the small arrow) is developed
for θ > 19°. At the pointM1, χðpÞ is sharply peaked atM,
and the flow becomes unstable at a small Λ, clearly

indicating the stripe phase. Increasing θ further beyond
the point M2, χðpÞ develops a peak at a location between
the M and Γ point. Similar result is obtained for other
values of ϕ, such as theM3 point in Fig. 2. Here, the sharp
peak of χðpÞ as well as the unstable flow unambiguously
identify the spiral order.
To locate the phase boundaries in a systematic manner,

we introduce an empirical measure to quantify and detect
the breakdown of smooth FRG flow. For a given dipolar
tilting, we compute fðθ;ϕÞ ¼ P

ΛðχmaxjΛ − χmaxjΛ−dΛÞ2,
i.e., the “sum of unphysical jumps” during the flow. The
value of f is very small in the paramagnetic phase because
of smooth continuous flow, and it is very large for ordered
phases because of their unstable flow [26]. By comparing
this to the DMRG, we know that at θ ¼ 0, independent of
ϕ, the system is deep inside the PM phase. Thus, it provides
a standard measure f0 ¼ fðθ ¼ 0;ϕ ¼ 0Þ. If fðθ;ϕÞ ≤ f0,
the low energy flow is equally smooth, or even smoother,
than that at θ ¼ 0, we then conclude the system flows to a
disordered, paramagnetic phase. The resulting boundary of
the PM phase is shown by the solid white line bending to
the right in Fig. 2. The transition from PM to stripe is
marked by a rapid increase in f=f0. By contrast, the
transition from stripe to spiral is signaled by the smoothing
of the flow and thus, the suppression of f (see the flow for
M2 in Fig. 2). We identify the stripe-spiral boundary as
where f develops a local minimum along the horizontal
cuts on the ðθ;ϕÞ plane. It is shown by the white dashed
line bending to the left in Fig. 2. This line is also where the
peaks in χðpÞ become smeared and the location of pmax
begins to change character. In the hatched region around
M2 in Fig. 2, the flow is much smoother thanM1 andM3

at a small Λ. It is analogous to P1, but χmax reaches a much
bigger value at Λ ¼ 0. Therefore, this small region is likely
a second PM phase, but on the verge of being ordered.
To summarize, our numerical FRG calculation reveals a

quantum paramagnetic phase occupying a large portion of
the phase diagram of the dipolar Heisenberg model. The
FRG enables us to reach large cutoff distances for an
accurate description of the dipolar exchange and the spiral
order. It describes quantum fluctuations beyond the spin
wave or Schwinger-boson theory. The widespread lack of
divergence in χ is unexpected. In hindsight, three factors
conspire to suppress long-range order. First, is the lattice
geometric frustration. Second, the stripe order is com-
pletely suppressed for a dipole tilting ϕ ¼ 30° due to
symmetry, such that the paramagnetic phase extends to
as far as θ ¼ 54°. Third, is the competition of Jij, i.e., the
exchange frustration, stemming from the long-range dipo-
lar exchange (see Fig. 1). Even in the J1-J2 model, a finite
J2 enhances paramagnetic behavior [9,10,44]. Longer
range exchanges lead to very flat classical energy land-
scapes, with distinct orders close in energy. These weak
classical orders are melted by quantum fluctuations to form
a quantum paramagnet.
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Our results suggest that experiments on ultracold quan-
tum gases of polar molecules with electric dipole moments,
or atoms with large magnetic dipole moments, are prom-
ising systems to explore frustrated magnetism and search
for spin liquids [15,19]. There are two limitations to the
current pf-FRG method. First, the flow equation is
restricted to one-loop diagrams. An improvement is to
include two-loop terms, as achieved recently in Ref. [45].
Second, the current pf-FRG implementation cannot directly
characterize the spin liquid states. Future work is needed to
elucidate the nature of the predicted spin liquid states in
various spin 1=2 models on the triangular lattice [46,47],
which remains an outstanding open problem.
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Huckans, P. Pedri, L. Santos, O. Gorceix, L. Vernac, and
B. Laburthe-Tolra, Phys. Rev. Lett. 111, 185305 (2013).

[20] P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild,
A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Nature
(London) 491, 87 (2012).

[21] H. Labuhn, D. Barredo, S. Ravets, S. De Léséleuc, T. Macrì,
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