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The phenomenon of charge fractionalization describes the emergence of novel excitations with fractional
quantum numbers, as predicted in strongly correlated systems such as spin liquids. We elucidate that
precisely such an unusual effect may occur in the simplest possible non-Fermi liquid, the two-channel
Kondo effect. To bring this concept down to experimental test, we study nonequilibrium transport through a
device realizing the charge two-channel Kondo critical point in a recent experiment by Iftikhar et al.
[Nature (London) 526, 233 (2015)]. The shot noise at low voltages is predicted to result in a universal Fano
factor e�=e ¼ 1=2. This allows us to experimentally identify elementary transport processes of emergent
fermions carrying half-integer charge.
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Introduction and results.—Deconfinement and fraction-
alization are fascinating phenomena in which particles that
are initially found as bound states become independent of
each other. Such phenomena emerge in strongly interacting
systems, e.g., in the form of spin-charge separation in
Luttinger liquids [1], the possible emergence of a spinon
Fermi sea in spin liquids [2], or the appearance of magnetic
monopoles in spin ice [3]. In this Letter we argue that a
similar phenomenon may be observed in ongoing experi-
ments on a charge-Kondo device [4].
As introduced in 1980, the two-channel Kondo (2CK)

model [5] describes a single impurity spin-1=2 S⃗ coupled to
two electronic channels α ¼ 1, 2 via

HK ¼ J
X
α¼1;2

ψ†
α↑ð0Þψα↓ð0ÞSþ þ H:c: ð1Þ

While a single channel of electrons can completely screen
the impurity spin, the presence of two (or more) competing
channels turns this model into a paradigmatic example
of frustration and non-Fermi liquid (NFL) behavior, with
possible broader significance in bulk systems such as heavy
fermion materials. Because of the spin-flip process HK , the
number of electrons from each channel α ¼ 1, 2 and each
spin σ ¼ ↑;↓, Nασ ¼

R
dxψ†

ασðxÞψασðxÞ, may change by
integer amounts. As a precursor to fractionalization in this
model, through the Emery-Kivelson (EK) solution [6], one
introduces charge, spin, flavor, and spin-flavor quantum
numbers,

N c;s ¼
1

2
ðN1↑ � N1↓ þ N2↑ � N2↓Þ;

N f;sf ¼
1

2
ðN1↑ � N1↓ − N2↑ ∓ N2↓Þ; ð2Þ

with associated new fermions, ψ†
μðxÞ (here, μ ¼ c, s, f, sf),

that change only the corresponding N μ quantum numbers
by �1. An exact rewriting of the Kondo interaction
is [6] HK ¼ Jf½ψ sð0Þψ†

sfð0Þ� þ ½ψ sð0Þψ sfð0Þ�gSþ þ H:c:
Crucially, at weak coupling, physical operators such as
HK involve the new fermions in pairs [7,8]. This is a
necessary constraint to describe FLs. Otherwise, upon
inverting Eq. (2), each individual new fermionic particle
ψ†
μ changes electronic numbers Nασ by half integers [7,8];

for example, ψ†
sf takes N sf → N sf þ 1 or, equivalently,

δðN1↑; N1↓; N2↑; N2↓Þ ¼ ð1
2
;− 1

2
;− 1

2
; 1
2
Þ. In this sense, the

new fermions are “confined” to occur in pairs in physical
processes in FLs. However, the nonperturbative Kondo
interaction leads to NFL behavior [5]. In light of this, one
may wonder: is the unpairing of these fermions possible
and can it be manifest in a physical system?
In recent years the multichannel Kondo effect was

experimentally studied in highly tunable semiconductor
quantum dot systems [4,9–12]. Our work is primarily
motivated by charge 2CK setups [13] recently realized
in the quantum Hall regime [9]. The impurity “spin” is
encoded by two nearly degenerate macroscopic charge
states of a large quantum dot (see Fig. 1), which is coupled
to normal leads via quantum point contacts (QPCs),
allowing us to flip the “spin” via single electron tunneling.
Upon decreasing temperature below the Kondo temperature
TK , the conductance reaches half the quantum conductance
G → G0 ¼ 1

2
ðe2=hÞ, corresponding to two perfectly trans-

mitting quantum resistors in series.
We study nonequilibrium transport through such devices

and analyze the nonlinear current IðVÞ and shot noise SðVÞ,
focusing on the vicinity of the 2CK critical point. Shot
noise provides information on the charge of the current
carrying particles, with examples ranging from the frac-
tional quantum Hall effect [14,15] to superconductor
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junctions exhibiting Cooper pair tunneling [16]. Applying
full counting statistics (FCS) [17] methods borrowed from
Gogolin and Komnik [18] and Schiller and Hershfield [19],
we find interesting universal properties in the nonequili-
brium Kondo regime T ≪ eV ≪ TK ,

I ¼ e2V
2h

�
1 −

π2

8

ejVj
TK

þO

�
eV
TK

�
2
�
;

S ¼ e3V
2h

�
π2

8

ejVj
TK

þO

�
eV
TK

�
2
�

ð3Þ

(for simplicity, we set T ¼ 0). The current contains a
nonlinear correction that corresponds to a backscattering
current Ib¼½ðe2VÞ=ð2hÞ�−I. While the first term describes
noiseless current through two perfectly transmitting QPCs,
the backscattering current produces shot noise S ¼
2e�Ib þOðV3Þ, with a Fano factor F ¼ S=ð2eIÞ≡ e�=e,
with e� ¼ e=2.
This fractional Fano factor can be precisely interpreted

in terms of the unpairing of a spin-flavor fermion ψ†
sf in

physical processes at the NFL state. Below, we identify the
elementary backscattering processes consisting of annihi-
lation of this individual fermion, which means half-integer
changes in electronic occupation numbers. Finally, we
suggest an alternative three-lead setup [4] to probe this
fractionalization.
Model.—Our system in Fig. 1 consists of a large metallic

quantum dot in the quantum Hall regime hosting spinless
electrons coupled to two normal leads via QPCs. It is
described by the standard 2CK Hamiltonian [13,20]

HK ¼
X
α¼1;2

�
iℏvF

X
σ

Z
dxψ†

ασðxÞ∂xψασðxÞ

þ Jα½ψ†
α↑ð0Þψα↓ð0ÞŜ− þ H:c:�

�
þ ΔEŜz: ð4Þ

Here, σ ¼ ↑ describes states in the leads and σ ¼ ↓ in the
dot, the index α ¼ 1, 2 labels the two QPCs, and vF is the
Fermi velocity. We assume [9,13] that the dot is sufficiently
large that its level spacing is small compared to the
temperature, as a result of which edge states in the dot

near different QPCs are incoherently coupled. In the
opposite regime we expect 1CK behavior. We specialize
to the large charging energy limit Ec ≫ eV, T, such that
only two macroscopic charge states, withN¼N0 orN0 þ 1
electrons in the dot, are relevant and play the role of the
impurity spin Ŝ. Thus, Ŝz¼ 1

2
jN0þ1ihN0þ1j− 1

2
jN0ihN0j,

and Ŝ− ¼ jN0ihN0 þ 1j. Upon detuning the gate voltage
from the degeneracy point, an energy splitting ΔE is
formed between these macroscopic charge states.
The 2CK state is a critical point occurring at charge

degeneracyΔE¼0 and for left-right symmetry J1¼J2¼J.
Below, we will comment on deviations from these con-
ditions which eventually lead to a crossover at low energies
to a FL state [13,20]. The parameters of the model include
the density of states ν ¼ ½1=ð2πℏvFÞ� and a high-energy
cutoff D, set by the minimum of the bandwidth and the
charging energy, defining through the tunneling amplitude
J the Kondo temperature TK ∼De−ð1=νJÞ.
The model equation (4) is an anisotropic XY Kondo

Hamiltonian. In our calculations below we will add a term
Hz ¼ Jz

P
α;σ;σ0 ψ

†
ασð0Þðσ⃗σσ0=2Þψασ0 ð0ÞSz, keeping in mind

that spin anisotropy is an irrelevant perturbation [21].
Mapping to the Toulouse Hamiltonian.—Following the

standard EK transformation [6,19], we (i) bosonize the
fermionic fields ψασðxÞ ∼ ð1= ffiffiffiffiffiffiffiffi

2πa
p ÞeiΦασðxÞ, with a short

distance cutoff a, (ii) perform the EK transformation
[Eq. (2)] to define charge, spin, flavor, and spin-
flavor bosons, Φασ → Φμ (μ ¼ c, s, f, sf), and (iii) refer-
mionize these bosons into new fermion operators
ψμ ∼ ð1= ffiffiffiffiffiffiffiffi

2πa
p ÞeiΦμ . After a unitary transformation the

Hamiltonian becomes

HK ¼ iℏvF
X
μ

Z
dxψ†

μðxÞ∂xψμðxÞ þ iJ χsfð0Þb̂

−
eV
2

Z
dx½ψ†

sfðxÞψ sfðxÞ þ ψ†
fðxÞψfðxÞ�

þ iðJz − 2πℏvFÞψ†
sð0Þψ sð0Þâ b̂; ð5Þ

where â and b̂ are local Majorana operators associated
with the impurity degrees of freedom, iâ b̂ ¼ Ŝz, satis-
fying â2 ¼ b̂2 ¼ 1

2
, χsfðxÞ ¼ f½ψ†

sfðxÞ þ ψ sfðxÞ�=
ffiffiffi
2

p g, and
J ¼ ½ðJ1 þ J2Þ=

ffiffiffiffiffiffiffiffi
2πa

p �. We included the source-drain
voltage eV, setting a chemical potential difference in the
leads eV½ðN1↑ − N2↑Þ=2�, which after the transformation
equation (2) becomes a chemical potential of the sf and f
fermions [19]. The last term accounts for deviations from
the Toulouse point Jz ¼ 2πℏvF. The current operator is
given by Î ¼ ½ðieÞ=ℏ�f½ðN1↑N2↑Þ=2�; HKg.
At the Toulouse point the Hamiltonian has a free

fermion form and one obtains the current [19,22] IðVÞ¼
½ðe2VÞ=ð2hÞ�½1þOðV2=T2

KÞ� and noise SðVÞ¼OðV3=T2
KÞ,

where TK ¼ πνJ 2, valid for eV ≪ TK. However, the

FIG. 1. Schematics of the device: two QPCs coupled to a large
quantum dot, with coupling constants J1 and J2. The overall
charge of the dot is controlled by a gate voltage Vg.
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quadratic voltage corrections in IðVÞ and the cubic term
in SðVÞ are artifacts of the free fermion structure at the
Toulouse point. In order to obtain the leading universal
corrections in eV=TK to the current and noise, we allow
finite deviations from the free fermion Toulouse point.
Computing the current as well as the shot noise using
nonequilibrium Keldysh Green function methods in the
framework of Eq. (5), to infinite order in J and to the
leading second order in v1 ¼ Jz − 2πℏvF, we obtain [22]
Eq. (3). Notably, we can define the backscattering current
Ib ≡G0V − I ¼ ½ðe2VÞ=h�½ðπ2ejVjÞ=ð16TKÞ� and write
the shot noise as S ¼ 2e�Ib, with e� ¼ e=2. In fact, one
may conjecture, as we have actually verified [22], that near
the 2CK fixed point the FCS of charge transfer is described
by half-integer charges.
Unpairing of EK fermions and the leading irrelevant

operator.—In order to better understand the result [Eq. (3)],
we express the 2CK fixed point Hamiltonian and its leading
irrelevant correction, of known dimension 3=2 [23], in the
language of EK fermions ψ†

μ.
In the framework of Eq. (5), at the 2CK fixed point

dominated by J , the local b̂ fermion hybridizes with the
spin-flavor fermion χsfðxÞ, responsible for fluctuations of
spin between the channels. Solving this quadratic Majorana
fermion model, one obtains the operator relation [24,25]

b̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
πνTK

p χ̃sfð0Þ; ð6Þ

which becomes exact at energies ≪TK. Here, χ̃sfðxÞ ¼
χsfðxÞsgnðxÞ is a boundary condition modified spin-flavor
Majorana fermion [22], reflecting the absorption of the
local Majorana fermion b̂. The impurity spin Ŝ is only
partially screened at the 2CK fixed point and has residual
entropy of 1

2
logð2Þ [6]. Using Eq. (6), its dynamics is

described in terms of the unpaired spin-flavor fermion,
for example, Ŝz ¼ ði= ffiffiffiffiffiffiffiffiffiffiffi

πνTK
p Þâχ̃sfð0Þ. This unpairing of

the EK fermion can be manifest via any coupling to the
impurity spin, e.g., applying a gate detuning ΔEŜz, as
discussed later. Even at ΔE ¼ 0, however, any finite
deviation from the Toulouse point v1 ¼ Jz − 2πℏvF in
Eq. (5) results in the leading irrelevant operator [22,26]

Hirr ¼
1

ν3=2
ffiffiffiffiffiffi
TK

p iψ†
sð0Þψ sð0Þχ̃sfð0Þâ; ð7Þ

containing an odd number of EK fermions.
Our results rely on the 2CK theory at the vicinity of

the anisotropic Toulouse point. One may question this
approach, given that it actually fails [19,27] to yield
correctly the known [27–31] e�=e ¼ 5=3 Fano factor in
the 1CK case. The failure of the Toulouse point description
in this case traces back to the fact that it produces an
anisotropic version of the leading irrelevant operator

∶J⃗sð0Þ2∶, where J⃗sðxÞ is the SU(2) spin current [23].
Expanding this dimension 2 operator in electron processes,
one finds [27] both 1e and 2e backscattering amplitudes
whose weighted average gives the correct e�=e ¼ 5=3 Fano
factor [27]. However, their ratio, and hence the Fano factor,
becomes different in the anisotropic Toulouse point which
yields an anisotropic operator of the form ∶Jzsð0Þ2∶. The
state of affairs is very different in the 2CK case. The
dimension 3=2 operator [Eq. (7)] is identified [25,26] with
the SU(2) symmetric operator Js−1ϕ⃗ in conformal field

theory, where ϕ⃗ is the vector field of the spin SU(2) sector.
This observation provides full confidence that our results
are not artifacts of the anisotropic Toulouse point.
Fermi’s golden rule.—Our result Eq. (3), supplemented

by an intelligible physical picture, can be reobtained by a
simple calculation based on Fermi’s golden rule applied
directly with respect to the irrelevant operator [Eq. (7)].
Decomposing the operator χ̃sfð0Þ ¼ ð1= ffiffiffiffiffiffi

2L
p ÞPksf ðc̃†ksf þ

c̃ksf Þ into normal fermionic modes [8], we see that it creates
either a particle or a hole in the spin-flavor Fermi sea.
Equation (5) shows that the source-drain voltage sets an
enhanced chemical potential eV=2 of the spin-flavor Fermi
sea. Thus, annihilation of one spin-flavor particle at ksf
above the equilibrium Fermi level 0 < εksf < eV=2 lowers
the energy. Energy conservation is attained via a creation of
a particle-hole excitation in the spin sector via the operator
ψ†
sð0Þψ sð0Þ ¼ ð1=LÞPkþ

P
k− c

†
s;kþcs;k− in Eq. (7). This

process depicted in Fig. 2 creates a unit change in the
quantum numbers in Eq. (2), Ñ sf → Ñ sf − 1; i.e., it
annihilates an unpaired spin-flavor fermion. Evaluating
the total rate for this process via Fermi’s golden rule gives,
using â2 ¼ 1

2
,

−
dhÑ sfi

dt
¼ 2π

ℏL3

X
k�;ksf

1

πν3TK
θðϵkþÞθðϵk−ÞθðeV=2 − ϵksf Þ

× δðϵkþ − ϵk− − ϵksf Þ ¼
π

ℏ
ðeVÞ2
16TK

: ð8Þ

Crucially, the unit change in Ñ sf , modifies electronic
occupations by half integers. Thus, this Poissonian process
actually describes backscattering of charge e� ¼ e=2, and
the backcattering current is

Ib ¼ −e�
dhÑ sfi

dt
¼ e2V

h
π2ejVj
16TK

;

with an associated noise S ¼ 2e�Ib, in agreement with
Eq. (3).
While the process displayed in Fig. 2 looks simple in

terms of the EK fermions, it cannot be described by a finite
number of electron tunneling events. This reflects the NFL
nature of the 2CK fixed point [5], lacking a notion of a local
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Fermi surface [32]. Nevertheless, an effective FL picture
holds in terms of EK fermions [7,8], allowing us to draw
the simple process in Fig. 2.
Finite temperature effects.—The universality of our

results [Eq. (3)] is revealed by the ratio between the
coefficients of eV=TK in the current and noise. Another
experimentally testable ratio can be obtained from the
leading T dependence of the current, which we find to be
I¼G0V[1−ðπ2=8Þf½ðejVjÞ=TK�þπ2ðT=TKÞg]. Similarly,
the noise SðV; TÞ has a temperature dependence where,
at T ≫ eV, it must cross from the shot noise limit [Eq. (3)]
to thermal noise S ¼ 4kBTG, with G ¼ dI=dVjV¼0.
High temperature Coulomb blockade regime.—At

energies that are high compared to the Kondo scale
maxðT; eVÞ ≫ TK but still lower than the charging energy,
the system crosses over to the Coulomb blockade classical
regime. The Fano factor S=ð2eIÞ ¼ ðR2

1 þ R2
2Þ=ðR1 þ R2Þ2

shows a dependence on the asymmetry of the QPC
resistances R1;2, and it approaches 1=2 in the symmetric
case, R1 ¼ R2 [33]. In that case, two consecutive tunneling
events, through the left and then the right QPC, are required
to transfer a single electron across the device. Thus, the
effective charge defined from noise may be misleading.
To distinguish this mathematical peculiarity from our
physical mechanism, one may look at the FCS. The
FCS, as calculated in Ref. [34], reflects [22] the fact that
the actual tunneling particles in the Coulomb blockade
regime are electrons and can be contrasted with our result
of a FCS described fully in terms of half-integer charges.
Furthermore, as we subsequently show, this fractional FCS
has a distinctive finite stability against channel asymmetry.
Deviations from the critical point.—The intricate proper-

ties of the critical point are destabilized by left-right
asymmetry ΔJ ¼ J1 − J2 or by gate voltage deviations
from the charge degeneracy point ΔE. These relevant
perturbations create an energy scale, T� ¼ c1TKðνΔJÞ2 þ
c2ðΔEÞ2=TK, with c1;2 coefficients of order unity. Below
this energy scale the system crosses over to a FL state,
whereby the nonlinear conductance gradually decreases
below G0 ¼ e2=2h [13,20] till it vanishes at eV ≪ T�.
Since TK may become high and approach the charging
energy (∼290 mK) in charge-Kondo devices [4,9], one may

realistically assume T� ≪ TK . This gives a finite voltage
window T� ≪ eV ≪ TK within which our shot noise
predictions, dominated by the leading irrelevant operator,
hold. Nevertheless, what is the leading influence of
finite T�? Extending the calculations of Ref. [20], we find
that, to leading order in T�, the effective charge remains
unchanged. This is in accordancewith the general argument
above, stating that any coupling to the impurity spin in the
2CK fixed point involves the unpaired spin-flavor fermion.
Thus, although relevant operators eventually destabilize the
critical point, the e�=e ¼ 1=2 Fano factor is remarkably
stable and includes the leading effects of relevant—as well
marginal—operators [22].
Three-lead setup.—We briefly present an alternative

setup that displays charge fractionalization. Consider
attaching a third lead [4] at voltage V and weakly coupling
it to the large dot with the two other leads held at V ¼ 0;
see Fig. 3. The model Hamiltonian is Eq. (4), where now
α ¼ 1, 2, 3 and J1 ¼ J2 > J3. We analyzed the current
and noise at the 2CK fixed point for this device. The
injected current through the third QPC is given by
I3ðVÞ ¼ ½ðe2VÞ=ℏ�ðπ2=2ÞðνJ3Þ2½1þOðeV=TKÞ�. In the
two strongly coupled leads α, β ¼ 1, 2, where, by channel
symmetry, the average ejected current is I ≡ Iα ¼ I3=2, we
find, based on the linear relation between the currents at
the fixed point [35], the current-current correlation
SαβðωÞ ≃ 2e�I, with e� ¼ e=2.
Interpreting this result, each individual charge e tunneling

through the third QPC into the dot, is equally and simulta-
neously partitioned into both leads; see Fig. 3. This frac-
tionalization can also be understood along the above Fermi
golden rule picture: the tunneling process from the weakly
coupled lead increases the dot’s charge,N0 → N0 þ 1; i.e., it
involves the operator Ŝþ ¼ ðâ − ib̂Þ= ffiffiffi

2
p

. Using Eq. (6), this
operator becomes the unpaired fermion χ̃sf , changing elec-
tronic numbers in the leads by half integers.
This setup has the advantage that charge fractionalization

can be seen in the shot noise of the full current as measured
in one of the leads, rather than in the backscattering current.
Before concluding, it is interesting for us to mention

other mechanisms for fractional charge transfer in related
devices, e.g., in a QPC coupled to a two-level system [36],
or near a Mott transition described by the Luther-Emery
point [37], which has a resemblance to Coulomb drag
experiments [38].

FIG. 2. Energy diagram of EK fermions. Elementary back-
scattering processes consist of annihilation of a single spin-flavor
fermion accompanied by a creation of a particle-hole excitation in
the spin Fermi sea.

FIG. 3. Charge fractionalization using a weak probe: one
electron tunnels from the weakly coupled lead no. 3 and is
equally and simultaneously partitioned into the two leads.
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Summary.—We analyzed nonequilibrium transport prop-
erties of charge 2CK devices and found that shot noise
encodes fractional charges signaling key NFL features. One
may compare this to the single-channel spin-Kondo effect
in quantum dots, where a Fano factor e�=e ¼ 5=3 has been
predicted based on a FL theory [27–31] and tested [39–43].
This is a weighted average of 1e and 2e processes, while
our current result e� ¼ e=2 cannot be accommodated
within such a Fermi liquid picture.
In contrast to charge-Kondo devices [4,9], calculations

of nonequilibrium transport in spin-multichannel Kondo
devices [10,12] remain challenging. Also, nonequilibrium
noise in N > 2 multichannel charge-Kondo devices [4],
whose linear transport properties were addressed recently
[44], remains an interesting question for future work. One
may exploit connections, e.g., to topological Kondo devi-
ces [45–49] and their nonequilibrium properties [50,51].
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