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Wear is the inevitable damage process of surfaces during sliding contact. According to the well-known
Archard’s wear law, the wear volume scales with the real contact area and as a result is proportional to the
load. Decades of wear experiments, however, show that this relation only holds up to a certain load limit,
above which the linearity is broken and a transition from mild to severe wear occurs. We investigate the
microscopic origins of this breakdown and the corresponding wear transition at the asperity level. Our
atomistic simulations reveal that the interaction between subsurface stress fields of neighboring contact
spots promotes the transition from mild to severe wear. The results show that this interaction triggers the
deep propagation of subsurface cracks and the eventual formation of large debris particles, with a size
corresponding to the apparent contact area of neighboring contact spots. This observation explains the
breakdown of the linear relation between the wear volume and the normal load in the severe wear regime.
This new understanding highlights the critical importance of studying contact beyond the elastic limit and

single-asperity models.

DOI: 10.1103/PhysRevLett.120.186105

Introduction.—The oldest and yet most fundamental wear
relation states that the amount of material lost from a surface
during sliding contact (i.e., wear volume) is proportional to
the normal force applied to the surface [1-4]. This empirical
observation is commonly rationalized by arguing that the
wear process is a direct result of interactions among elevated
surface asperities and therefore the wear volume scales with
the real contact area, that is proportional to the normal load
[5]. This linear relation, however, is only maintained within
a certain range of applied loads [6], and breakdowns have
been reported for lower [7,8] and higher [9-12] load limits.
Therefore, the wear process is typically classified into the
low, mild, and severe wear regimes, as summarized in
Table I [9,13—-18] and Fig. 1(a).

Inspired by this classification, we hypothesized different
material removal mechanisms at the asperity level, which
are schematically depicted in Figs. 1(b)-1(e). In the low

wear regime, surface asperities deform dominantly elasto-
plastically and without significant formation of debris
particles, as depicted in Fig. 1(c). In the mild wear regime,
on the other hand, a fraction of the contacting surface
asperities are detached by microcracking, resulting in tiny
wear particles [Fig. 1(d)]. Inspired by the seminal work of
Rabinowicz on the minimum size of debris particles [20],
we found in a recent study that adhesive junctions below a
critical size do not detach but smooth out plastically [21].
The transition from low to mild wear is thus connected to
the growing junction sizes with increasing load. The
experimentally observed linear relation between load and
wear volume in the mild wear regime results from the fact
that the volume of debris particles is proportional to the
junction size [19,22].

Figure 1(e) illustrates a hypothesized asperity-level mecha-
nism for severe wear: large subsurface cracks occur,

TABLE 1. Wear regimes and mechanisms [9,13-18].
Wear Wear volume Friction
Wear regime Wear mechanism Wear debris coefficient vs load coefficient
Low wear Localized surface deformation and No observable debris 10-8-107° Sublinear u < 0.01
plowing mechanisms
Mild wear Surface microcracking and localized Tiny powderlike debris  10~4-1072 Linear 001 <u<0.5
fracture at the asperity level
Severe wear Subsurface crack propagation and Large flakelike debris 10721 Superlinear u>0.5

macroscopic fracture
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Wear regimes and hypothesized asperity-level mechanisms. (a) A typical relation between wear volume and applied load in

different wear regimes [9,13—18]. (b) The behavior of the macroscopically “flat” contact must be understood in terms of microscopic
multi- and single-asperity contacts. (c) In the low wear regime, asperities are deformed elastoplastically without debris formation. (d) In
the mild wear regime, elevated surface asperities are detached in the form of tiny debris particles. In this condition, the debris size is
comparable to the junction size [19]. (e) In the severe wear regime, the formation of large wear debris particles occurs by deep crack
propagation underneath the surface contact. The debris size then corresponds to the apparent contact area at the multiasperity level.

eventually leading to the formation of debris particles with
sizes corresponding to that of the apparent contact area. As a
result, the linear relation between the wear volume and
normal load is violated, which is the key indicator of severe
wear in macroscopic wear experiments [6,9]. While several
engineering models have been developed for predicting the
transition from mild to severe wear regimes [10,15,23], their
predictions still rely on empirical data, as underlying tran-
sition mechanisms remain unclear. Considering the complex
multiscale nature of the contact between sliding bodies
[24-26], wear experiments [7,8,27-30] and numerical sim-
ulations [31-40] over the past decade have been focused on
the investigation of wear processes at the single-asperity level.

Here, we present atomistic simulations that treat the
transition from mild to severe wear as a multiasperity
phenomenon. Our simulations reveal that this transition is
governed by shielding interactions between subsurface
cracks. As a result, debris particles with sizes correspond-
ing to the apparent contact area instead of the real contact
area are formed and the linear relation between wear
volume and normal force is violated.

Method.—All simulations are molecular dynamics sim-
ulations performed in 2D and 3D with LAMMPS [41] using
modified, nearest-neighbor Morse potentials [42]. The tail
of these potentials is modified to embrittle the material and
to be able to observe debris formation at computationally
feasible length scales [21]. The 2D potential is P6 from
Ref. [21] and the 3D potential is from Ref. [19]. Some
details of the potentials and physical properties [43] are
additionally recalled in the Supplemental Material [44]. We
consider a strong interfacial adhesion between the two
sliding bodies; i.e., the same interatomic potential is used
for both the bulk and interface. The setup is similar as in
Ref. [21], i.e., sliding simulations with a constant per atom
normal load 0.00le/r, and constant tangential velocity

0.01ry/ty (g is the reduced time unit) on a fixed layer on
the top; see Supplemental Material Fig. S2 for a schematic
[44]. We consider systems with two pairs of colliding
asperities (semicircular or hemispherical). Periodic boun-
dary conditions are applied in the sliding direction. This
idealized setup allows well-defined parametric studies that
are impossible with more realistic surface geometries, while
retaining the essential physics of the process. Throughout
the Letter, D and A represent the asperity diameter and
interspacing. Reduced units of ground-state bond length r
and bond energy ¢ are used. A Verlet algorithm with a time
step 0.0025¢, is used for numerical integration. Langevin
thermostats (with a damping parameter 0.05f,) at the
boundaries were set to a temperature of 0.le/kg.
Analysis and visualization is conducted with oviTo [45],
dislocations in 3D are detected with the dislocation
extraction algorithm [46].

Results.—Since severe wear violates the relation between
load and wear volume, we hypothesize that the reduced
spacing between junctions at high load may promote
subsurface interactions between those distinct junctions
[47-49], which leads to a combined, multiasperity wear
mechanism. To examine this hypothesis, we first consider a
far-spaced pair of identical contacting asperities in 2D and
3D [Figs. 2(a) and 2(c)]. As expected, the collisions
between surface asperities result in the formation of two
isolated debris particles. Figure 2(b) presents the subsurface
shear stress (that is vertically averaged over a subsurface
layer with a thickness of the asperity diameter). It shows
that the junctions are individually loaded to bulk shear
strength 7;, where a weak subsurface interaction occurs.
The loading ultimately leads to the nucleation of subsurface
cracks and debris formation. In 3D, two isolated dislocation
networks form in the areas of stress concentration
[Fig. 2(d)], but otherwise the behavior is the same.
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FIG. 2. Asperity-level wear mechanisms. Snapshots of debris formation in 2D (a), (e) and 3D (c), (g). The insets show the initial setup
with D = 60ry (2D) and D = 70r; (3D). The total box length is L = 7D. The final detached volume (i.e., the debris atoms) is
highlighted in red. Panels (b) and (f) show the subsurface shear stress vertically averaged over a subsurface layer with thickness D.

Panels (d) and (h) depict the total dislocation length per bin size of L/30 for the 3D simulations.

A reduced spacing A between the junctions, though,
results in a different mechanism [Figs. 2(e) and 2(g)]: The
junction pair jointly forms a single, big debris particle.
While the junctions are loaded individually at the very
onset of contact [Fig. 2(f)], their subsurface stress fields
merge with increasing sliding distance S. In this situation,
the proportionality between the junction and debris sizes is
violated, as the debris size is associated with the apparent
contact area between the two asperity junctions. This
observation rationalizes the breakdown of the linear linear
relation between the wear volume and the normal load (i.e.,
Archard’s wear law) in the severe wear regime.

This merging can be understood by considering that the
formation of a particle is nothing but the development of a

crack that leads to its detachment [21]. Figure 3 presents a
detailed analysis of the evolution of the stress component
045, Which is perpendicular to the crack tips and therefore
drives their nucleation and propagation. At the onset of
sliding, identical stress concentrations develop at the base
of both the leading and the trailing asperities [Fig. 3(a)],
where subsurface cracks, marked as “inner” and “outer,”
are nucleated [Fig. 3(b)]. With further sliding, however, the
outer crack goes much deeper into the bulk as a conse-
quence of the modified subsurface stress state. It can be
seen that there is an asymmetry in that only the inner crack
is unloaded. This is an effect of the somewhat peculiar
loading conditions: The stress in the leading asperity (on
the right in our setup) cannot be relieved by detaching the
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Crack shielding drives joint debris formation. (a)—(c) Map of the stress component o,45- perpendicular to the crack tips, which

drives the nucleation and propagation of the subsurface cracks. Simulation with D = 100r, and 2 = 0.7D. The gray arrow indicates the
sliding direction. At the onset of sliding (a), (b), the stress is concentrated identically at the corner of both asperities where subsurface
cracks, marked as “inner” and “outer,” are nucleated. After further sliding, however, the inner crack is shielded by the outer one and
closed (c), eventually resulting in joint debris formation. Panel (d) quantitatively supports this observation by showing a quick drop in
the stress intensity factor of the inner crack. For comparison, data of a simulation with A = 2D are shown with dotted lines. No shielding
occurs, both cracks grow, and two individual debris particles form. To minimize the thermal noise, both simulations were performed at a
lower temperature T = 0.045¢/kp.
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FIG. 4. Wear mechanisms and corresponding debris volume as
a function of junction interspacing. (a) The cumulative wear
volume is measured for simulations with similar loading and
interfacial adhesion but different spacing A between colliding
pairs of asperities, for three initial asperity sizes D. The debris
volume is normalized by a reference volume V, = 2(zD?/4),
considering that each asperity is detached in the form of an
idealized circular particle of the same diameter. Once 4 < D, the
debris volume exceeds this prediction and a transition from mild
to severe wear occurs. In the severe wear regime (open symbols),
the proportionality between the debris size and real contact area is
violated.

trailing asperity, but a large outer crack can unload the
trailing asperity. This observation offers a mechanism for
the transition from mild to severe wear regimes at the
asperity level: Depending on the interfacial adhesion and
surface topography, neighboring microjunctions strongly
interact through their subsurface stress fields, resulting in
deep propagation of cracks into the bulk and the detach-
ment of large debris particles.

The interaction between the subsurface cracks can also
be quantified by the estimated stress intensity factor K; of
both cracks. For a detailed analysis of the stress intensity
factor, a per-atom stress tensor is directly derived from the
potential by LAMMPS and averaged over a radius of 3r to
smooth out the noise by thermal fluctuations. The stress
intensity factor K7 is estimated using the local stress field of
o450 around the stress tip. Since o = K, f(0)/v/2zr with
f(0) = cos(6/2)[1 + sin(0/2) sin(36/2)] [50], we calcu-
late o/ f(0) for each atom and fit the function K;/+/2xr to
this data (for r < 25r; and only for atoms with —0.75z <
6 < 0.75rz for numerical stability). Figure 3(d) shows that
while both crack nucleation sites are initially loaded to the
critical stress intensity factor Kjc, the inner crack is
subsequently unloaded below the critical value. The dashed
lines are the result of a similar setup with far-spaced

asperities, in which no unloading of the inner crack is
observed.

This shielding effect is known for two parallel cracks
subjected to mode I loading, which mutually reduce their
stress intensity factor when their distance is smaller than
2-3 times their length (see also Supplemental Material
Fig. S3 [44]) [51,52]. This argument explains why the joint
debris formation only occurs with closely spaced junctions.
Supplemental Material Fig. S4 [44] further supports this
argument by showing that the shielding interaction can be
suppressed by disconnecting the communication between
the cracks. These observations also highlight the influence
of subsurface inhomogeneities (e.g., grain boundaries,
precipitates, and voids) on wear mechanisms.

Finally, we carried out a systematic set of simulations in
2D, each with different initial asperity size and spacing.
Figure 4 summarizes the results by plotting the total debris
volume versus the interspacing 4 between colliding pairs of
asperities for three different initial asperity sizes D. It can
be seen that when A > D, asperity junctions individually
form two debris particles as shown in Fig. 2(a). However,
once A is comparable to D, a transition occurs and a single,
large debris particle forms, as we expect from the dis-
cussion above. In addition, this is consistent with previous
numerical [53] and analytical [47] studies that show that the
contact solutions (i.e., the subsurface stress distribution and
the displacement field) are remarkably different from
those of the single asperity when the asperity spacing is
comparable to the asperity diameter. One should note that
the magnitude of this multiasperity length scale may be
influenced by asperities geometries, subsurface micro-
structure, sliding distance, temperature, etc., which demand
further systematic investigations in the future. Figure 4 also
shows that the volume of single, large debris particles is
significantly greater than the cumulative volume of two
individually formed debris particles, confirming a larger
material loss in the presence of asperity interactions.
A detailed correlation between the wear volume and
macroscopic components of load in the severe wear regime,
however, requires further numerical and experimental
studies.

Conclusion.—The key outcome of this study is the
finding that closely spaced asperities are worn off together
as a result of the interaction between subsurface stress
fields, which can be explained in the context of fracture
mechanics. This process leads to a wear volume propor-
tional to the apparent contact area instead of the real contact
area and thereby provides an asperity-level model for the
transition from mild to severe wear. While this new
understanding together with the critical junction size model
[19,21] can be applied to simple multiasperity contact
models [54,55] (i.e., two neighboring junctions jointly form
a single big particle upon sliding if the spacing between
them is smaller than their average size), it highlights a
critical need for further fundamental studies in mechanics
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and physics of contact [56-58]. We should note that, in this
study, we have analyzed the interaction between idealized
circular asperity junctions. Future studies should be dedi-
cated to investigate the asperity junction interactions in
more complex contact situations (e.g., lateral interaction
perpendicular to the sliding direction, interaction between
junctions with different sizes [59] and shapes [60], fractal
rough contacts [22], etc.). Furthermore, the influence of
surface roughness parameters, subsurface microstructure,
and inhomogeneities such as precipitates or microcracks on
the interaction length scale and surface cracking need to be
yetinvestigated [35,61]. In summary, these results highlight
a critical need for studying single- and multiasperity
contact beyond the elastic limit [62-67].
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