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The ability to measure single quanta allows the complete characterization of small quantum systems
known as full-counting statistics. Quantum gas microscopy enables one to observe many-body systems
at the single-atom precision. We extend the idea of full-counting statistics to nonequilibrium open
many-particle dynamics and apply it to discuss the quench dynamics. By way of illustration, we
consider an exactly solvable model to demonstrate the emergence of unique phenomena such as
nonlocal and chiral propagation of correlations, leading to a concomitant oscillatory entanglement
growth. We find that correlations can propagate beyond the conventional maximal speed, known as the
Lieb-Robinson bound, at the cost of probabilistic nature of quantum measurement. These features
become most prominent at the real-to-complex spectrum transition point of an underlying parity-time-
symmetric effective non-Hermitian Hamiltonian. A possible experimental situation with quantum gas

microscopy is discussed.
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The last two decades have witnessed remarkable devel-
opments in the ability to detect individual quanta. In small
nanoscale devices such as quantum dots, the exchange of
electrons with the reservoir has been detected at the single-
electron level [1-4]. Photons emitted from atoms or
molecules are now routinely detected individually over a
broad range of frequencies [5]. In these systems, complete
information about the underlying nonequilibrium dynamics
can be obtained from the full-counting statistics [6-9], i.e.,
statistics of the number of detected signals. While related
techniques were applied to Bose gases [10-12] and electron
leads [13], developments in this direction have been
made for quantum objects with relatively small degrees
of freedom.

Meanwhile, recent advances in quantum gas microscopy
[14-23] have enabled one to detect atoms trapped in an
optical lattice at the single-atom precision. Already, a
number of groundbreaking experiments, such as direct
observations [24-26] of light-cone spreading of correlations
limited by the Lieb-Robinson (LR) velocity v; g [27-29],
and measurements of entanglement entropy [30] and anti-
ferromagnetic correlations [31-34], have been achieved.
Similar techniques are available in trapped ions [35,36]. On
another front, various types of controlled dissipation have
been realized in quantum gases [37-44]. These develop-
ments suggest the possibilities of measuring open many-
body systems at the single-quantum level.

The aim of this Letter is to extend the idea of full-
counting statistics to nonequilibrium many-particle dynam-
ics. We consider a many-particle system coupled to a
Markovian reservoir. We discuss the full-counting dynam-
ics that give the time evolution of the density matrix
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conditioned on the number of quantum jumps. A quantum
jump refers to a discrete stochastic event due to the action
of a jump operator known as the Lindblad operator L,, [45].
Physically, this operator describes the detection of a
specific measurable signal. Depending on each realization
of quantum jumps, the system evolves in time stochasti-
cally along what is referred to as trajectory. Trajectories can
then be classified according to the number of jumps. We
find nonlocal and chiral propagation of correlations and a
concomitant oscillatory entanglement growth. These fea-
tures originate from the non-Hermiticity of the underlying
open quantum dynamics and become most prominent at the
spectrum transition point of the parity-time (P7T) symmetric
Hamiltonian [46]. We also discuss a possible experimental
realization by quantum gas microscopy.

From a broader perspective, previous studies on open
quantum dynamics have revealed emergent thermodynamic
structures [47,48], entanglement preparation [49-52],
unconventional phase transitions [53-55], stochastic
dynamics [56-62], and reservoir engineering in dissipative
systems [63—69]. Our work addresses as yet unexplored
questions on the propagation of correlations and that of
information under measurement backaction. Our results
indicate that, by harnessing backaction due to observation
of individual quanta, correlations can propagate beyond the
LR bound at the cost of the probabilistic nature of quantum
measurement.

Full-counting many-particle dynamics.—We first illus-
trate our idea in a general way and then apply it to an
exactly solvable model. Suppose that a quantum many-
particle system is coupled to a Markovian reservoir and
described by
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dt = _i(ﬂeffﬁ —ﬁﬁfo) + j[ﬁ], (1)

where j(t) is the density matrix, Ho = H — (i/2)>_ ,LiL,
is an effective non-Hermitian Hamiltonian with L ,’s being
Lindblad operators, and 7[p] = S, L AL} describes quan-
tum jump processes [45,70-73]. Here and henceforth, we
set i = 1. Given an observed number n of quantum jumps,
we consider the full-counting many-particle dynamics
described by the density matrix

A

P.A(1)P,

P =

(2)
where 75n is a projector onto the subspace corresponding to
n jumps and P, (1) = Tr[P,j(t)P,] gives the probability of
finding n jumps during the time interval [0, 7]. In this Letter,
the jump process is assumed to be destructive; i.e., L,
causes the loss of a single particle. In practice, one can
obtain p")(¢) by initially preparing N particles, letting the
system evolve during time ¢, and performing a global
measurement to count the total number of particles. Note
that a time record of quantum jumps must not be known
here. In experiments, similar postselective operations
have found important applications in ultracold atoms
[26,30,74,75] and linear optics [76].

Decomposing the density matrix into the sum p =
SN 0" of unnormalized conditional density matrices

o™ = P,pP,, the time evolution can formally be solved as

/dt /d’IH (AL }
{“k}k|

<UL (1) OV (1) [ ] [ELE (8] (3)

k=1

@(

where Aty = 1, — t; with 1, = 1, and Uy (1) = e~ e,
The solution (3) represents the ensemble average over all
possible occurrences of n quantum jump events.

As in closed systems [77-85], for unconditional open
dynamics p(7) = ., P,(1)p\" (t), the speed at which
correlations build up between distant particles is known
to be bounded by the LR velocity [45,86,87], provided that
the Liouvillian in Eq. (1) consists of local operators. In
contrast, for the full-counting dynamics 5")(¢), the propa-
gation speed is no longer expected to obey the LR velocity
due to the nonlocal nature of the measurement that acts on
an entire many-particle system. Here, we explore such
hitherto unexplored nonequilibrium dynamics.

To be concrete, we focus on a simple exactly
solvable model. Consider spin-polarized N fermionic
atoms trapped in a superlattice with the Hamiltonian

IA{I:_ %O[J(C;.Jrlcl_l_éléprl)_'—( l)lhclcl] Here, él
(¢]) is the annihilation (creation) operator of a spinless
fermion at site /, J is the hopping amplitude, and A

describes the on-site staggered potential. We assume that
L is even and that the system is initially half-filled, i.e.,
N =L/2. The system is subject to periodic boundary
conditions and spatially periodic dissipation, which can
be induced by a weak resonant optical lattice [Fig. 1(a)].
The time evolution is then described by the master
equation (1) with the jump process J[p] = 27> ,[261/36; +
(=D)(é)pé), | + ¢,11p¢))] and the effective Hamiltonian
H.; = Hpr — 2iyN. Both of them consist of local oper-
ators and the resulting non-Hermitian Hamiltonian,

L-1
Bpr == [+ (=1)!ir) (@] 81+ & r) + (-

=0
Z €x( g,ucf s (4)

1)'heje)]

satisfies the PT symmetry [46]; i.e., the symmetry with
respect to the product of parity operation and time reversal.
The jump part can be written in the diagonal form
L,= \/méz x> With 7,,’s being positive coefficients and d 2k
being a linear combination of ¢; [45]. Physically, this jump
operator annihilates a single-particle mode with wave vector .

In the last line of Eq. (4), the effective Hamiltonian
Hpy is diagonalized with eigenvalues e, (k) =
+/h* —4y* +2J%(1 + cos(k)), where J' = +/J> +¢°
and k = 2zn/(L/2) (n =0,1,...,L/2 — 1). The operators
§" and f” create the right and left eigenvectors, i.e.,
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FIG. 1. (a) Fermions trapped in a superlattice and subject to a
spatially modulated dissipative lattice (red), which causes atomic
loss and breaks the parity symmetry with respect to the dashed
line. The total atom number is measured by a site-resolved
detector. (b) The top (black) and bottom (blue) bands of the
effective Hamiltonian (4) for y = 0, h = J (dashed curves), and
y/h = 1/2 (solid curves). (c) Unconditional (left-most panel) and
full-counting (other panels) equal-time correlations for different
numbers n of quantum jumps with N =L/2 =61 and
y = h/2 = 0.5J. White dashed lines represent the light cone
associated with the Lieb-Robinson bound.
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I:IPT@}/(|0> =¢,(k )g/lk|0> and <0|f/1kHPT = <0|f/1k€/1< ),and
they obey a generalized anticommutation relation
{F e @}k,} = 6,6, 4. A direct consequence of the non-
Hermiticity is the nonorthogonality of eigenvectors.
Specifically, § and § satisfy an unusual anticommutation
relation {G;. G}t = 8w A (k), where Ay (k) is the A2/
component of the 2 x 2 matrix whose nonzero off-diagonal
elements indicate the nonorthogonality between the right
eigenvectors of different bands in mode k.

When y < h/2, Hpr has an entirely real, gapped band
spectrum [dashed curves in Fig. 1(b)]. Aty = h/2, the band
gap closes at k = z [solid curves in Fig. 1(b)], and the
k = n eigenstates of the two bands coalesce into a single
one. Such a point is known as an exceptional point [88] or,
in the thermodynamic limit, as the spectral singularity [89].
Above the threshold y > h/2, some eigenmodes around
k = z turn out to have complex pairs of pure imaginary
eigenvalues. For simplicity, we assume that L /2 is odd such
that the singularity at k = 7 is avoided [see the inset in
Fig. 1(b)] [90].

Nonlocal propagation of correlations.—Combining a
general solution (3) and the diagonalized effective
Hamiltonian (4), we obtain an exact solution of the full-
counting dynamics p(")(¢) [45]. By way of illustration, we
consider the following quench dynamics. Initially, the
staggered potential ~ and the dissipation y are switched
off and the system is prepared in the ground state of A. We
then suddenly switch on % and y, and we let the system
evolve according to Eq. (1). We choose y = h/2, such that
the parameters of the postquench Hamiltonian H p; are set
to the real-to-complex spectrum transition point, leading to
the linear dispersion around k& = z [Fig. 1(b)].

Let us first discuss the unconditional case p(t) =
SN o Pu(6)p" (£). The left-most panel in Fig. 1(c) plots
an equal-time correlation C(I, 1) = Tr[p()¢] &), which
exhibits a blurred light cone [91]. Since the Liouvillian
in Eq. (1) consists of local operators, it is expected that
correlations can propagate no faster than twice the LR
velocity 2v;r [28,45,86,87], where v1r is given by the
maximum group velocity |Oe(k)/D(k/2)|,—, = 2J [92].

The situation is quite different in the full-counting
dynamics /") (¢) in Eq. (2). Figure 1(c) plots an equal-time
correlation C") (1, 1) = Tr[p"")(¢)é]¢,] for such dynamics
with different values of n. We find nonlocal modes that
propagate faster than the LR velocity of the corresponding
unconditional dynamics. Moreover, velocities of such
supersonic modes appear at integer multiples of 2uv;g.
Physically, the propagations beyond the LR bound signals
nonlocality encoded in the full-counting dynamics 5 (t).

The origin of these nonlocal propagations can be under-
stood from the underlying dynamics governed by the
effective non-Hermitian Hamiltonian H p7, which describes
time evolution during an interval without quantum
jumps [45]. To clarify the essential point, let us focus
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FIG. 2. (a) Unequal- and (b) equal-time correlations plotted for
N=L/2=61 and y = h/2=0.5J. The white dashed lines
indicate the Lieb-Robinson bound. (c) An illustration of how the
correlation is carried by quasiparticles propagating at velocities
vir and 3vpg. (d) The effective band populations for different
times J't = 0" (postquench state), 4, and 8.

on a simple quantum trajectory containing null jumps:
PO (1) = e~ifirrt p(0)eifrrt S Te[e=Frr p(0) i), where the
factor —2iyN in H.q cancels out in forming the ratio. A
similar time evolution has been discussed in dissipative
evolutions [93] and PT-symmetric quantum systems
[94,95]. An initially pure state remains pure in these dynamics
[94]. Denoting p(0) = |¥y)(¥y|, we introduce an unnor-
malized time-dependent wave function |W,) = e~Her! W),
We first expand the initial state |¥,) in terms of right

eigenvectors: |Wo) = [ [, [ wudi]|0), where s are
expansion coefficients. We then introduce the unequal-time
correlation by  CO (1, 1) = (¥o|é] (£)¢0(0)|Po)/ (¥, |¥,)
with &) (1) = e’HPT’éTe"'ﬂPTf , which can be calculated as

2 Z Z{ Ay } WIkeiej‘(kﬁ_ik“/z-‘
L — = P N(1) ‘

Here, ay;, and f3;;, are coefficients chosen according to the
parity of / [45], [ -] is the ceiling function, and N (1) =
S (DA (K (1), where (1) = yrye 07,
The total norm of an unnormalized quantum state |¥,) is
then given by (¥,|¥,) = [[N ().

A crucial observation here is that due to the non-
orthogonality of eigenvectors (A, _ = A’ # 0), the norm
N(t) oscillates at frequency 2¢, (k). Thus, C\¥(L, 1) in
Eq. (5) involves terms that oscillate at frequencies
€,(k),3¢,(k),5¢,(k), ..., leading to the propagations at
velocities vr g, 3v1R, SR, ... [Fig. 2(a)]. In contrast, the
equal-time correlation C(¥)([, ¢) involves the propagations
at velocities 2v; g, 401 R, 6V R, ... [Fig. 2(b)], as it is formed
by quasiparticle pairs propagating with velocities
VLR, 3VLR, VLR, --- [77] [Fig. 2(c)].

The emergence of these supersonic modes is a conse-
quence of the interplay between non-Hermiticity and
the many-particle nature of the system. The appearance
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of the oscillating norm factors \; (¢) in the denominator in
Eq. (5) originates from the fact that the total norm of a
many-particle quantum state is given by their product.
Thus, the supersonic modes have no counterparts in the
single-particle sector or the mean-field non-Hermitian
dynamics in optics [96,97] and dissipative matter waves
[39,98-100], where the total norm is determined by the
sum rather than the product of N (7) [101].

In analogy with closed systems [77-85], we may regard
i (t) = |wul?/N(t) as an effective band population of
quasiparticles. In noninteracting closed systems, the band
population remains constant after the quench [77,83-85]. In
contrast, the effective band population oscillates in time
[Fig. 2(d)] due to the nonorthogonality between two
eigenvectors in a mode k. Since the interference for the
same momentum implies a nonlocal coupling in real space,
we may interpret the supersonic propagation as a conse-
quence of such a nonlocal, self-interaction of quasiparticles.

Chirality in propagation of correlations.—Yet another
feature of the observed propagation is its chirality. Here, by
chirality we mean that the violation of the left-right
symmetry of propagation of correlations. This symmetry
breaking results from the parity violation in the effective
Hamiltonian; i.e., Hpy is not invariant under [ — —/
[Fig. 1(a)]. We can intuitively interpret the pronounced
propagation in the right direction as found in Figs. 2(a)
and 2(b), on the basis of the gain-loss structure of Hp;.
Imagine that particles are injected at the “gain” bond having
positive imaginary hopping +iy [inset of Fig. 3(a)]. Then, a
majority of the particles flow into the deeper, right
potential. The injected particles are removed at the “loss”
bond, and thus, local flows of particles can be formed.
Overall, the flow in the right direction outweighs the
reverse flow, resulting in a net positive current.

A nontrivial feature here is that the chirality is most
pronounced at the spectrum transition point of Hpy.
Figure 3(a) shows the current iJ 1=} (¢]¢,,, — ¢],,¢;) in
a long-time regime for different values of & and y. The
pronounced chirality at the threshold y = h/2 originates
from the emergence of the exceptional point at k ==z
[Fig. 1(b)] [102]. In its vicinity, the strong nonorthogonality
induces coalescence of two eigenvectors of different bands
into the one associated with the band dispersion having
positive group velocities de/d(k/2) > 0[45]. This confluent
band structure leads to imbalanced effective band populations
7 (t) in Fig. 2(d), where the population 7, ; of the upper
band almost vanishes for k < 7, while 7i_ ; takes a value close
to unity. Such an effective violation of the particle-hole
symmetry generates quasiparticles having positive group
velocities [cf. Fig. 1(b)], leading to the pronounced propa-
gation of correlations in the right direction.

It is noteworthy that, in contrast to the single-particle
sector [103—108], the chirality in the present case is promi-
nent owing to the formation of the Fermi sea at e = 0; low-
energy excitations are subject to the strong nonorthogonality
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FIG. 3. (a) The current averaged over the time interval between

t =15/J' and 20/J’ plotted against the strength of dissipation y
for different on site potentials 4. The inset shows a gain-loss
situation for a positive particle current. (b) The time evolutions
of entanglement entropy of a chain of length 20, starting from a
product state (the ground state of A with h = o). We vary a
postquench parameter y from 0.0 to 0.5 (top to bottom) with step
0.1 and y = h/2 held fixed. The inset magnifies the short-
time regime showing the oscillatory behavior due to the time-
dependent effective band populations.

that becomes maximal at the gap closing point k = z. The
resulting unidirectionality appears as the chiral propagation
of correlations in the case of many-particle systems.

The chirality also has a physical consequence in the
entanglement growth of the system. Figure 3(b) shows the
time evolution of the entanglement entropy S, [5(*) ()] [109]
after the quench for different values of y with subregion A of
a chain of 20 sites. A decrease in the entanglement entropy
with increasing y can be interpreted as a consequence of the
chirality. The quantum quench generates pairs of entangled
quasiparticles propagating in opposite directions [77]. The
entanglement entropy essentially measures the number of
quantum-mechanically correlated pairs, such that one quasi-
particle is inside and the other is outside of subregion A.
Since the chiral (unidirectional) modes do not generate such
entangled pairs moving in opposite directions, the chirality
leads to a decrease in the entanglement entropy.

An oscillation on top of a linear increase in the
entanglement entropy [inset in Fig. 3(b)] results from the
time-dependent effective band populations 71 (). In view
of the simple dispersion of the present model, this presents
yet another unique feature of open quantum dynamics
because, in closed integrable systems, such oscillations of
entanglement entropy emerge only if there exist multiple
local maxima in a band dispersion [83].

Discussions.—As a possible experimental test of the
present consideration, we propose to using site-resolved
measurements [ 14—23] to probe the full-counting dynamics.
The dissipation can be implemented by superimposing
a weak resonant optical lattice [40-42,98,110,111] [see
Fig. 1(a)]. The parameters y, J, h are experimentally tuned
by controlling the intensities of optical beams. Using
fermionic quantum gas microscopy [17-21], one can mea-
sure the site-resolved density-density correlation and the
total number of particles simultaneously. Since the con-
nected density-density correlation in noninteracting models
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reduces to the product of the equal-time correlations, both
correlations share the same information. While detecting
supersonic propagations will be challenging at long times,
they should be observable in a short-time regime such that a
relatively large number of atoms still remain in the trap. For
example, if one chooses y = h/2 = 0.25J and N = 61, the
probability of detecting trajectories with lost particles less
than the half of the initial total particle number can exceed
~20% up to tJ' <3 at which supersonic propagations,
similar to the ones in Fig. 1(c), are visible. In practice,
one may choose °Li atoms and use an optical beam resonant
with the %S , — 2P3, transition, as recently demonstrated
in Ref. [42].

The ability of measuring individual quanta can reveal the
emergence of unique many-particle dynamics that cannot be
seen in closed systems. Our results show that correlations can
propagate faster than the LR bound at the cost of the
probabilistic nature of quantum measurement. The emer-
gence of the nonlocal propagation originates from the non-
orthogonality of eigenvectors due to the non-Hermiticity of
the underlying dynamics. In view of the generality of
nonorthogonality in non-Hermitian systems, the nonlocal
propagation can also appear in a variety of other open many-
particle systems. Such features will become most prominent
when nonorthogonality becomes maximal due to, for exam-
ple, the presence of an exceptional point as demonstrated in
our Letter. It is intriguing to explore the roles of interactions
[79,80] or nonintegrablility [81,82] in such unconventional
many-body dynamics subject to single-quantum-resolved
measurement. Analogous to closed systems [77,78], it is of
interest to develop field-theoretic arguments. It is noteworthy
that the low-energy field theory [112] of the effective
Hamiltonian Hp; corresponds to the quantum Liouville
theory, which attracts much attention in high-energy physics
[113]. We hope that the present work stimulates further
studies in these directions.
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