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In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real
experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic
differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-
species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an
effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced
dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely
measure these differences. We realize a relative precision of Δg=g ≈ 6 × 10−11 per shot, which improves on
the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By
reducing gravity gradient systematic errors to one part in 1013, these results pave the way for an atomic test of
the equivalence principle at an accuracy comparable with state-of-the-art classical tests.
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The equivalence principle lies at the heart of general
relativity, and efforts to test its validity with increasing
precision for a variety of test objects are at the forefront of
experimental physics [1–15]. Many of these experiments
probe the weak equivalence principle (WEP), which
stipulates the universality of free fall [16]. In addition to
testing a fundamental aspect of general relativity, WEP
tests can be used to search for new interactions and for dark
matter [17,18].
All WEP tests operate under the same general principle—

they compare the gravitational accelerations of two test
masses of different composition. In an ideal thought experi-
ment, this comparison would occur in a uniform gravita-
tional field, making the measurement insensitive to the initial
kinematics of the test masses. However, in realistic exper-
imental setups, gravity gradients are present. Gravity gra-
dients cause the measured acceleration of a given test mass to
vary linearly as a function of its initial position and velocity.
As a consequence, mismatches in the initial kinematics of
the test masses can appear as a spuriousWEP violation if not
characterized to the necessary accuracy. This coupling of
initial kinematics to gravity gradients is a leading systematic
error in WEP tests based on atom interferometry [12,19].
It is relevant to consider the ramifications of this

effect for Earth’s gravity gradient, which is approximately
Tzz ¼ 3 × 10−7 g=m in the vertical direction. To lowest
order, the differential acceleration that the gravity gradient
induces between the test masses A and B is gA − gB ¼
Tzz½Δzþ ΔvT�≡ TzzΔz̄, where Δz ¼ zA − zB; Δv ¼
vA − vB; gi, zi, and vi are the respective gravitational
acceleration, initial position, and initial velocity of test
mass i ∈ fA;Bg; and T is the time interval over which
the acceleration measurement occurs. This implies, for

example, that an equivalence principle test with relative
accuracy 2ðgA − gBÞ=ðgA þ gBÞ ¼ ðgA − gBÞ=g ≈ 10−14

requires relative displacements arising from initial kin-
ematics to be controlled at the level of 30 nm.
In this work, we experimentally demonstrate a method to

make a dual-species atom interferometric WEP test [3–9]
insensitive to initial kinematics. Following the proposal of
Roura [20], the optical frequency is shifted for the mirror
sequence of a light-pulse Mach-Zehnder atom interferom-
eter [21,22], producing a phase shift proportional to the
average vertical displacement Δz̄ during the interferometer
[23]. An appropriate choice of this frequency shift counter-
acts the corresponding phase shift from the gravity gradient
[20], creating an effective inertial frame. Although the
interferometer trajectories remain perturbed by the gravity
gradient as a function of initial position and velocity, the
interferometer phase becomes insensitive to these pertur-
bations. We refer to this method as frequency shift gravity
gradient compensation (FSGG compensation). Using
FSGG compensation in a long duration and large momen-
tum transfer (long T=LMT) dual-species interferometer
with 85Rb and 87Rb, we demonstrate a reduction in
sensitivity to Δz̄ to 1% of its original value. Moreover,
we introduce a technique to determine the correct fre-
quency shift without needing to independently measure or
calculate the gravity gradient. An analogous method to
FSGG compensation is not currently known for classical
free-fall WEP tests.
The core features of the experimental apparatus have

been described in previous work [24–28]. Some modifi-
cations to the atom source have been made in order to
generate an ultracold dual-species cloud (earlier experi-
ments used only 87Rb). Approximately 4 × 109 87Rb atoms
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and 3 × 108 85Rb atoms are loaded from a 2D magneto-
optical trap (MOT) into a 3D MOT. Subsequently, forced
microwave evaporation is performed on the 87Rb atoms in a
quadrupole and then a time-orbiting potential trap. The
85Rb atoms are sympathetically cooled. During evapora-
tion, the 87Rb atoms are in the jF ¼ 2; mF ¼ 2 > state, and
the 85Rb atoms are in the jF ¼ 3; mF ¼ 3 > state.
Following a magnetic lensing sequence to collimate the
atom clouds [26], an optical lattice launches the atoms
upward into a 10 m fountain. After the launch, an optical
dipole lens provides further collimation in the transverse
dimensions [28], and the atoms are prepared in Zeeman
insensitive hyperfine sublevels by a sequence of microwave
pulses. Residual atoms that are not transferred by the state
preparation pulses are removed by momentum transfer
from a resonant light pulse. At the time of detection, the
atom clouds have expanded to a radial size of approx-
imately 1 cm.
Following the work described in Refs. [27,28], the LMT

beam splitter and mirror sequences for the interferometer
use absolute-ac-Stark-shift-compensated sequential two-
photon Bragg pulses. The Bragg pulses simultaneously
address the 85Rb and 87Rb atoms so that phase shifts from
optical path length fluctuations (e.g., due to vibrations)
cancel as a common mode in the differential measurement.
Typical experimental parameters are 10ℏk momentum
splitting between the interferometer arms and T ¼
900 ms pulse spacing (k denotes the wave number of
the Bragg lasers). In most of the experimental runs, the
beam splitters operate in a symmetric or near-symmetric
configuration [29]. For instance, for a 12ℏk beam splitter,
the lower interferometer path receives a 6ℏk downward
momentum kick, and the upper interferometer path receives
a 6ℏk upward kick. For a 10ℏk beam splitter, the lower path
receives a 6ℏk downward kick, and the upper path receives
a 4ℏk upward kick. Symmetric sequences are used to
reduce phase shifts associated with the differential recoil
velocity. Upward- and downward-kicking Bragg pulses
occur sequentially and are interleaved. Additional infor-
mation about the experimental sequence is provided in the
Supplemental Material [30].
Figure 1(a) illustrates thedual-species FSGG-compensated

interferometer. The Bragg lasers nominally have frequency f.
For all the LMT pulses that make up the interferometer
mirror sequence, the laser frequency is shifted by an amount
Δf. In a uniform gravity gradient, Δf=f ¼ Δk=k ¼
TzzT2=2 results in perfect compensation [20]. As the gradient
in the 10 m fountain changes substantially as a function of
height [28], the optimal Δf involves a weighted average
T̄zz ∼ 2 × 10−7 g=m of the gravity gradients experienced by
the atoms at different heights [30]. A CCD camera records
fluorescence images of the interferometer output ports for
both species. Because the 85Rb and 87Rb clouds overlap to
within the cloud size, we implement a staggered imaging
sequence. First, near-resonant light for only one species is

pulsed on, stopping the atoms of that species in place. The
atoms of the other species are allowed to fall for an additional
0.9 ms before being stopped so that the output ports of the
second species are imaged resolvably below the output ports
of the first species on the CCD [see Fig. 1(b)]. Horizontal
spatial fringes are put across the output ports by tilting the
angle of the retroreflection mirror for the final beam splitter
sequence (phase shear readout) [25,28]. Comparing the phase
of these fringes for 85Rb and 87Rb provides a differential
acceleration measurement for each run of the experiment.
To extract the differential phase froma fluorescence image,

we bin each interferometer port vertically and compute the
asymmetry AðxÞ≡ ½P1ðxÞ − P2ðxÞ�=½P1ðxÞ þ P2ðxÞ� for
each interferometer, where PiðxÞ is the number of counts
in port i as a function of horizontal position x. Each
interferometer asymmetry is then filtered and fit to a
sinusoid. For the data presented in this work, the single-
shot differential phase uncertainty is typically ∼40 mrad.
An accurate a priori determination of the compensation

frequency shift Δf would require a sequence of many
gravity gradient measurements with high spatial resolution.
It is more convenient to determine Δf empirically by
directly minimizing the sensitivity of the interferometer to
initial kinematics. Initial kinematic mismatches Δz and
Δv enter both the gravity-gradient-induced and FSGG-
compensation phase shifts via the quantity Δz̄ [20,32].
Since the interferometer is intrinsically velocity selective, it
is most convenient to vary Δz̄ by adjusting Δz. To optimize
Δf, we used a 87Rb-only gravity gradiometer consisting of
two simultaneous, vertically displaced interferometers (see
Ref. [28] for a description of the gradiometer sequence).
The optimal Δf is determined by minimizing the displace-
ment dependence of the differential phase shift between

(a) (b)

FIG. 1. Implementation of the FSGG-compensation scheme.
(a) The interferometers in a dual-species differential accelerom-
eter are separated by an initial displacement Δz. Because of the
gravity gradient Tzz, the interferometers experience a differential
acceleration TzzΔz and a differential phase shift kTzzΔzT2. To
perform FSGG compensation, the effective wave vector of the
interferometer mirror pulses is changed by Δk, which adds a
differential phase shift −2ΔkΔz. For Δk=k ¼ 1

2
TzzT2, the differ-

ential phase becomes insensitive to the initial displacement Δz.
Alternatively, a scan of Δk provides information about Δz [23].
(b) Raw fluorescence image of the dual-species differential
accelerometer operating at a LMT order of 10ℏk with initially
overlapped clouds and Δf ¼ 343 MHz, using phase shear read-
out to determine the differential phase.
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these interferometers (see Fig. 2). This technique is
operationally similar to methods for finding magic wave-
lengths in precision spectroscopy [33,34] and assumes that
the gravity gradient is temporally stable.
As a confirmation, we obtained the same value for Δf

using the dual-species interferometer. Specifically, for
multiple values of Δf, we measure the variation of the
differential phase when the initial displacementΔz between
the 85Rb and 87Rb clouds is shifted by 5.5 mm. The optimal
Δf is that for which the differential phases are equal, as
shown in Fig. 3(a). Note that this procedure does not reduce
sensitivity to WEP violations, which does not depend
on initial kinematic offsets [20]. Figure 3(b) shows that
FSGG compensation cancels the TzzΔz̄ phase shift to
ð0.7� 1.3Þ% of its uncompensated value, limited by
statistical uncertainty.
The data shown in Fig. 3 require the ability to inde-

pendently adjust the positions of the 85Rb and 87Rb clouds
at the start of the interferometer. These adjustments are
accomplished with the aid of two-photon Raman transitions
[22,35]. Unlike the Bragg transitions used in the interfer-
ometer, Raman transitions change the atomic hyperfine
state. Since 85Rb and 87Rb have significantly different
ground-state hyperfine splittings (3.0 vs 6.8 GHz)
[36,37], Raman transitions can transfer momentum to
one species while being far off resonance from the other.
An initial velocity-selection Bragg pulse occurs 130 ms
before the first interferometer beam splitter. Next, a Raman

pulse delivers a 2ℏk momentum kick to the 87Rb atoms. A
corresponding Raman pulse for the 85Rb atoms can either
be applied immediately following the 87Rb Raman pulse or
after a delay of up to 120 ms, during which the two clouds
move relative to each other. During this delay time, an
additional momentum offset between the 85Rb and 87Rb
atoms can be achieved by further accelerating the 87Rb
atoms with Bragg pulses. We typically use a total momen-
tum offset of 8ℏk. At the end of the delay time, a Bragg
pulse deceleration sequence reverses these auxiliary
momentum kicks. Varying the delay time allows for the
tuning of the relative position shift between the two species.
With this technique, we can tune Δz̄ to zero with an

(b)(a)

FIG. 2. (a) Raw data from the 87Rb-only (10ℏk momentum
splitting, T ¼ 900 ms) gravity gradiometer used to determine the
optimal frequency shift Δf. The upper and lower pairs of output
ports correspond to the two vertically displaced interferometers.
The two interferometers use opposite input ports, which would
give them a differential phase of π in the absence of any gravity
gradients. Upper image: without FSGG compensation. Lower
image: with FSGG compensation. Without FSGG compensation,
the differential phase is visibly shifted away from π. With FSGG
compensation, the differential phase is π, illustrating the cancella-
tion of the gravity gradient phase shift. (b) Gradiometer phase vs
baseline for Δf ¼ 0 MHz (blue points), Δf ¼ 320 MHz (light
red points), and Δf ¼ 340 MHz (dark red points). Error bars are
smaller than the points.

(a)

(b)

FIG. 3. Dependence of the differential phase on mirror pulse
frequency shift Δf and initial separation Δz. (a) Differential
phase as a function of Δf for two initial separations differing
by 5.5 mm. The slope of each linear fit is used to determine
the quantities Δz̄ ¼ −3.21� 0.07 mm (red points) and Δz̄ ¼
2.3� 0.1 mm (blue points). Each point is the average of ∼20
experimental shots. For Δf ¼ 345� 11 MHz, the differential
phase at the two separations is equal and, therefore, insensitive
to the gravity gradient. (b) Differential phase as a function
of relative position shift for Δf ¼ 0 MHz (black points, ∼30
shots per point), Δf ¼ 510 MHz (blue points, ∼100 shots per
point), and Δf ¼ 343 MHz (red points, ∼100 shots per point).
The intersection point of all three lines provides the relative
position shift required to set Δz̄ ¼ 0, 2.47� 0.04 mm. The
slope of the red linear fit is ð−0.7� 1.3Þ% of the slope of
the black linear fit, demonstrating the reduction of differential
phase sensitivity to initial kinematic mismatches. All differ-
ential phases are referenced to the differential phase at
Δf ¼ 0 MHz and Δz̄ ¼ 2.3� 0.1 mm.
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accuracy of 40 μm, limited by the uncertainty of the slopes
in Fig. 3(b). Combined with the suppression of initial
kinematic sensitivity provided by FSGG compensation,
this reduces the relative differential phase shift associated
with TzzΔz̄ to ð6� 12Þ × 10−14. Improved statistical res-
olution, which will be present during the integration over
many shots for an equivalence principle test, should allow
the accuracy to whichΔz̄ is tuned to zero to be improved by
more than a factor of 10. This would bring the systematic
error from TzzΔz̄ to below 1 × 10−14.
Because the interferometer output ports have a finite

spatial extent, the gravity gradient induces a phase shift
across each output port in the vertical direction. If the ports
are vertically binned to extract the interferometer phase,
averaging over the position-dependent phase shift reduces
the contrast of the interferometer [20]. This effect is
suppressed by FSGG compensation. Figure 4 shows the
phase shift across one port of a 20ℏk 87Rb interferometer
with and without FSGG compensation. To calculate the
phase shift as a function of vertical position, we divide each
port into four vertical bins and compute the phase shift
of each bin relative to the top bin. FSGG compensation
reduces the position-dependent phase shift by a factor of
30, limited by statistical uncertainty. This method is
conceptually similar to the rotation compensation methods
of Refs. [12,25,38,39], where rotation-induced phase shifts
from transverse velocity inhomogeneities are compensated
by additional position- and velocity-dependent phase shifts.
We note that methods similar to those employed for
rotation compensation can be used to compensate off-axis
gravity gradients Txz and Tyz. Differential phase offsets

from these couplings are currently below our experimental
resolution.
The dual-species interferometer demonstrated in this

work exhibits unparalleled sensitivity to accelerations. For
a 10ℏk interferometer with T ¼ 900 ms, the differential
acceleration sensitivity is 6.4 × 108 rad=g. Together with the
single-shot differential phase uncertainty of ∼40 mrad, this
implies a relative precision of Δg=g ≈ 6 × 10−11 per shot or
3 × 10−10=

ffiffiffiffiffiffi

Hz
p

, which improves on the best published
result for a dual-species interferometer by more than 3
orders of magnitude [7]. Suppressing the relative phase shifts
associated with gravity gradients to below 10−13 is an
important step toward allowing this acceleration sensitivity
to be utilized for an atom interferometric test of the
equivalence principle at an accuracy that is competitive
with classical tests [1,2]. We anticipate that planned
improvements in the atom source and imaging protocol
can improve the single-shot phase resolution by an order of
magnitude. In combination with the improvements in initial
kinematic control described above, this would pave the way
for an atomic equivalence principle test at the 10−14 level,
comparable to the accuracy recently realized in a classical
space-based test [40]. FSGG compensation could also be
useful for quantum space-based tests of the equivalence
principle with even longer interferometer durations [13,15].
In addition to its application for WEP measurements,
the determination of the gravity-gradient-compensating
Δf could be a valuable tool for precision gravity gradiom-
etry and for measurements of Newton’s gravitational con-
stant [41].
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Note added.—Recently, a first demonstration of FSGG
compensation in a precision gravity gradiometer was
reported in Ref. [42].
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