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We explore the influence of dissipation on a paradigmatic driven-dissipative model where a collection of
two level atoms interact with both quadratures of a quantum cavity mode. The closed system exhibits
multiple phase transitions involving discrete and continuous symmetries breaking and all phases culminate
in a multicritical point. In the open system, we show that infinitesimal dissipation erases the phase with
broken continuous symmetry and radically alters the model’s phase diagram. The multicritical point now
becomes brittle and splits into two tricritical points where first- and second-order symmetry-breaking
transitions meet. A quantum fluctuations analysis shows that, surprisingly, the tricritical points exhibit
anomalous finite fluctuations, as opposed to standard tricritical points arising in 3He-4He mixtures. Our
work has direct implications for a variety of fields, including cold atoms and ions in optical cavities, circuit-
quantum electrodynamics as well as optomechanical systems.
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Dissipation can fundamentally influence quantum many-
body systems and their phase transitions in often counter-
intuitiveways. Prime examples of open quantummany-body
systems are interacting light-matter systems where state of
the art experiments are able to engineer dissipation channels
[1–4]. They combine, in a unique manner, the many-body
physics of condensed matter systems with quantum optical
tools, including driving andwell-controlled dissipation [5,6].
In addition to fostering deeper understanding of cooperative
phenomena, these systems have potential applications in the
realms of quantum computation [7] and laser and maser
technologies [8], and can potentially generate new states of
matter such as light-induced superconductivity [9]. New
universality classes emerge in driven-dissipative systems
[10–12], and dissipation can generate topological effects
[13]. Concurrently, due to the inapplicability of the frame-
work of equilibrium statistical physics, our understanding of
driven-dissipative models remains limited, motivating fur-
ther studies in this field.
Paradigmatic models of driven-dissipative light-matter

systems involve multiple spinlike degrees of freedom that
are driven and strongly coupled to bosonic cavitymodes [see
Fig. 1(a)] [14–16]. Suchmodels commonly exhibit quantum
phase transitions (QPTs) from a normal phase (NP) to
superradiant phase (SP) depending on the coupling between
the spins and cavities. Controlled realizations of such
models can be achieved in cold atomic quantum gases in
high finesse optical cavities [2]. These engineered systems
can be used to study quantum phase transitions both in and
out of equilibrium in an extremely controlled manner, e.g.,
(i) aZ2 QPT in the so-called driven-dissipative Dickemodel
with a single cavity [2,17], (ii) Uð1Þ supersolid symmetry
breakingwhen coupling two cavitymodes to the atoms [18],
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FIG. 1. (a) A schematic illustration of the interpolating Dicke-
Tavis-Cummings model [Eq. (1)] using a collection of two-level
atoms that are strongly coupled to an optical cavity mode with
dissipation rate κ and atomic decay rate γ [19]. (b) Phase diagram of
the nondissipative model [Eq. (1)] with ω ¼ ωc ¼ ωa. The system
displays a Z2 × Z2 symmetry except for the λx ¼ λy Tavis-Cum-
mings line, where a continuousUð1Þ-symmetry emerges [20]. Four
distinct phases are possible, indicated by their respective free-energy
landscapes as a function of the real and imaginary parts of the cavity
field αRe and αIm, respectively. Quantum phase transitions occur
between a normal phase (white) and superradiant phases (blue and
red), including a transition between the superradiant phases through
the higher-symmetry diagonal Tavis-Cummings line. The phases
meet at a multicritical point. (c) Steady-state phase diagram of the
dissipativemodel [Eq. (2)] for γ ¼ 0 and κ=ω ¼ 0.1. TheUð1Þ high
symmetry line and the multicritical point are washed out by
dissipation, replaced by a normal phase sliver that separates the
two superradiant phases. Additionally, new regions of coexisting
solutions appear (light red and light blue regions). Each region is
marked by the number of stable physical solutions [21]. The white
arrows point to the new tricritical points where a second-order phase
transition linemeets a first-order phase transition line. Solid (dashed)
linesmark the stability boundary of the normal (superradiant) phase.
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and (iii) coupling of high-spin atoms to a cavity mode [19].
The latter two cases manifest rich phase diagrams where
multiple broken symmetry phases meet at a multicritical
point. Similar features are also shared by other fundamental
models such as the Lipkin-Meshkov-Glick (LMG) model
[23], or models with QPTs of tunable symmetries [20,24].
Interestingly, already for the Dicke model, the inevitable
coupling to dissipation channels was shown to alter the
closed system physics [25,26]. In particular, cavity dissi-
pationwas shown to lead to shifts of the critical points and to
modifications of critical exponents [27–29].
Here, we study the connection between the closed and

open phase diagram of a paradigmatic driven-dissipative
model [20], hosting a multicritical point and phase tran-
sitions breaking discrete and continuous symmetries.
Infinitesimal dissipation dramatically impacts the model’s
phase diagram, resulting in rich phenomena, including a
splitting of a multicritical point into two tricritical points,
coexistence of phases [30], and relics of the continuous
symmetry in rotated order parameters. In particular, we
analyze the model’s quantum fluctuations and show that
these tricritical points exhibit anomalous finite fluctuations,
as opposed to standard tricritical points [31].
We consider a bosonic cavity mode coupled to N two-

level systems described by the Hamiltonian [20,24]

H ¼ ℏωca†aþ ℏωaSz

þ 2ℏλxffiffiffiffi
N

p Sxðaþ a†Þ þ 2ℏλyffiffiffiffi
N

p iSyða − a†Þ; ð1Þ

where a† and a are the bosonic creation and annihilation
operators of the cavity field, respectively, and the cavity’s
resonance frequency is ωc. The collective spin operators
Sα ¼

P
N
j¼1 σ

j
α with α ¼ x, y, z are constituted from the

individual Pauli spin operators σjα describing the identical
two-level systems with level spacing ℏωa. The two quad-
ratures of the cavity field couple to different projections of
the collective spin operators with arbitrary real couplings λx
and λy. Hence, this model interpolates between two ubiqui-
tous light-matter models, the Dicke model [32,33] limit
when either λx ¼ 0 or λy ¼ 0 and the Tavis-Cummings
model [34] for λx ¼ λy, and will be dubbed here as the
interpolating Dicke-Tavis-Cummings (IDTC) model. A
schematic illustration of the model is depicted in Fig. 1(a).
The IDTC model has a Z2 × Z2 symmetry, except for

along the diagonal λx ¼ λy where it has an enlarged Uð1Þ
symmetry, as schematically shown in Fig. 1(b) [20]. For λx,
λy ≤ λc ≡ ffiffiffiffiffiffiffiffiffiffiffi

ωcωa
p

=2, the system has a trivial ground state,
dubbed the normal phase, that is comprised of an empty
cavity and all of the two-level systems in their respective
ground states, oriented along the z axis. Fixing one of the
couplings below criticality λi ≤ λc and taking the other
above it λj > λc with i, j ∈ fx; yg and i ≠ j, the system
undergoes a Z2-breaking Dicke-like transition from the NP
to a SP, where the cavity features a finite mean population,

hai ≠ 0, and the two-level systems are on average oriented
away from the z axis. Beyond the SP threshold and along
the diagonal, λx ¼ λy, the Uð1Þ symmetry is spontaneously
broken marking the Tavis-Cummings QPT [20]. The hall-
mark of the IDTC model is the appearance of a multicritical
point at λx ¼ λy ¼ λc, where all phases meet and the
symmetry of the Hamiltonian changes from a discrete to
a continuous symmetry [20].
The relevant complex order parameter which captures

these transitions is hai ¼ ffiffiffiffi
N

p
α, where α ¼ αRe þ iαIm. At

a Dicke-like phase transition either αRe ≠ 0 and αIm ¼ 0, or
αRe ¼ 0 and αIm ≠ 0. Along the Tavis-Cummings line, the
Uð1Þ symmetry is broken and both αRe, αIm ≠ 0. The
Ginzburg-Landau energy potential of the order parameter is
schematically plotted in Fig. 1(b) and was calculated in
Ref. [20]. It shows (i) a single minimum in the normal
phase, (ii) two minima along either the real or the imaginary
axis marking the Z2 Dicke-like symmetry breaking, and
(iii) a “sombrero-hat” potential with an enlarged Uð1Þ
symmetry on the diagonal.
The closed system phase diagram [Fig. 1(b)], however,

fundamentally changes if one includes dissipation in the
model, which will be relevant for any experimental imple-
mentation of such a system. In the presence of both cavity
and global atomic dissipation, the driven and dissipative
nature of the system is described by a Liouvillian equation
for the density matrix ρsys of the system [35]

dρsys
dt

¼ −
i
ℏ
½HðtÞ; ρsys� þ κ½2aρsysa† − fa†a; ρsysg�

þ γ

N
½2S−ρsysSþ − fSþS−; ρsysg�; ð2Þ

where S� ¼ Sx � iSy are ladder operators. The first term on
the rhs describes the standard Hamiltonian evolution while
the other two terms represent the Markovian dissipation for
both the cavity and the collective spin in Lindblad formwith
rates κ and γ, respectively. It should be noted that the master
equation, Eq. (2), is valid in the rotating frame of driven
systems with weak cavity-spin coupling, cf. Refs. [2,18,19].
The ultrastrong coupling regime should generally be inves-
tigated using dressed operators [36,37]. Here, we use Eq. (2)
and discuss the validity of our results in the strong coupling
regime in [38]. In the following, we set γ ¼ 0 and focus
mainly on cavity dissipation.
The mean-field equations governing the different

ordered phases can be derived from Eq. (2),

ωcαIm − καRe − 2λyY ¼ 0; ð3Þ

ωcαRe þ καIm þ 2λxX ¼ 0; ð4Þ

ωaY þ 4λyαImZ ¼ 0; ð5Þ

ωaX − 4λxαReZ ¼ 0; ð6Þ
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where we defined hSxi ¼ NX, hSyi ¼ NY and hSzi ¼ NZ
and have taken the steady-state limit. Additionally, for the
case of the global dissipation considered here, we have the
spin-conservation law X2 þ Y2 þ Z2 ¼ 1=4 that is used to
solve the mean-field equations analytically [21].
Solving Eqs. (3)–(6), we find that dissipation stabilizes a

richer phenomenology inaccessible in the closed system
paradigm, with multiple bifurcations and coexisting many-
body phases, see Fig. 1(c) [21]. Specifically, the mean-field
equations can be manipulated to obtain an equation for
Z: κ2ω2

a þ ½ð8Zλ2x þ ωcωaÞð8Zλ2y þ ωcωaÞ� ¼ 0 [21]. All
valid solutions are then subject to a constraint 4κ2λ2xλ2y ≤
ðλ2x − λ2yÞ2ω2

c [21]. However, only a subset of these solutions
are compatible with the aforementioned spin-conservation
law. Note that, the spin conservation is trivially violated in
the presence of single spin dephasing leading to the
destruction of Dicke superradiant phases, [25,39], which
is beyond the scope of this work.
The implications of this constraint are numerous, for

example, (i) it is violated at the Tavis-Cummings line,
λx ¼ λy, implying that the Uð1Þ QPT is destroyed by
dissipation, as can be easily seen using adiabatic elimina-
tion [21] (cf. Ref. [26]); (ii) it is additionally violated in a
κ-dependent sliver around the Tavis-Cummings line, see
Fig. 1(c). Consequently, the NP percolates through this
sliver beyond the multicritical region of the closed system.
Away from the sliver, solving the mean-field equations
leads to multiple stable and unstable solutions [21]. In
particular, the independent Dicke-like phases boast two
stable solutions corresponding to the Z2-broken SP states,
as well as an unstable NP solution, a feature seen also in
Ref. [25]. Interestingly, in the regime where both couplings
are above λc, coexistence of both stable SP and NP states
appears, supported by two unstable solutions, see Fig. 1(c)
and Ref. [21].
Dissipation leads to additional important features in the

IDTC model as evinced by Fig. 2 where the order
parameters, αRe and αIm, for one of the stable symmetry
broken solutions are plotted. Clearly, αRe and αIm leak
across the NP diagonal sliver, unlike the nondissipative
case [cf. Fig. 1]. Consequently, the cavity field α is complex
within the Z2 SP regions, which can be attributed to the
remnant memory of the underlying Uð1Þ symmetry in the
problem. Similarly, αIm changes sign as a function of λx and
λy, thus showing that the mean-field solutions are rotating
within the complex plane. Importantly, the order parameter
components, αRe and αIm, evolve continuously from zero
across the Dicke-like phase boundaries, but show a
discontinuous behavior along the dissipation-induced NP
sliver. Therefore, along the sliver edges, there are two
second-order transition lines, which morph into two first-
order transition lines in the vicinity of the nondissipative
multicritical point, λx ¼ λy ¼ λc; i.e., these lines meet at
new dissipation-induced tricritical points, which separate
the continuous and discontinuous symmetry breaking

transitions in the system, see Figs. 1(c) and 2.
For ωa ¼ ωc ¼ ω, we find that the separation between
the two out-of-equilibrium tricritical points scales
linearly with κ for κ ≪ ω and is given by

δ ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ=ωÞ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ=ωÞ2

pq
≈ κ=

ffiffiffi
2

p
[21].

To summarize, the dissipation renders the multicriticality
of the IDTC model brittle. Nevertheless, signatures of the
Tavis-Cummings Uð1Þ symmetry manifest in the splitting
of the multicritical point into two new tricritical points with
coexisting phases, and the two closed-system SP phases are
separated by an emerging NP sliver. Importantly, the
multicriticality is sensitive to even infinitesimally small
cavity dissipation. This is radically different from standard
driven-dissipative systems such as the Dicke model, where
cavity dissipation or a global atomic dissipation engender a
small modification of phase boundaries [14,15].
A more thorough characterization of the phase diagram is

provided by an analysis of the steady state fluctuations and
their scaling beyond mean field. In all regimes of the
parameter space, the fluctuation Hamiltonian reduces to a
problem of two coupled linear oscillators [21]. In the
thermodynamic limit (largeN), it takes the generic form [20]

Hfl ¼ ℏωcc†cþ ℏΩad†d

þ ðΓ1c†dþ Γ2cdþ Γ3d†2 þ H:c:Þ; ð7Þ

where we have defined a ¼ α
ffiffiffiffi
N

p þ c with c the bosonic
cavity fluctuation operator, and have used the Holstein-
Primakoff representation for the spins, Sþ ¼ b†

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − b†b

p

and Sz ¼ −ðN=2Þ þ b†b. Here, b ¼ β
ffiffiffiffi
N

p þ d is a bosonic
annihilation operator describing deviations away from the z
axis, with β ¼ ðX − iYÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2 − Z
p

itsmeanvalue andd the

(a) (b)

FIG. 2. (a) Real and (b) imaginary part of the order parameter
describing the cavity occupation number, αRe and αIm, for one of
the four possible mean-field solutions [21]. Dissipation leads to
leakage across the NP diagonal sliver; i.e., the cavity field α
becomes complex within the SP regions. Additionally, αIm
changes sign as a function of λx and λy, thus, showing that
the mean-field steady state solutions are rotating within the
complex plane. δ indicates the separation between the two out-of-
equilibrium tricritical points [21]. In both plots ω ¼ ωc ¼ ωa,
κ=ω ¼ 0.1 and γ ¼ 0.
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atomic fluctuation operator. The parametersΩa, Γ1, Γ2, and
Γ3 are determined by the mean-field solutions [20,21].
A normal mode transformation on Eq. (7) yields the

excitation spectra of the problem as was studied for the
closed system case in Ref. [20]. To analyze the nature of
the phase transitions in the open system dynamics, we
calculate, using the Liouvillian Eq. (2), the time evolution of
the equal-time two-operator correlation functions. The
resulting equations of motion form a closed set of ten
coupled differential equations for the correlators, hc†ci,
hc†c†i, hcci, hd†di, hd†d†i, hddi, hc†di, hc†d†i, hcdi, and
hd†ci [21,40]. In the steady state, this set conforms to a set of
linear inhomogeneous equations, which can then be solved
for λx ≠ λy to obtain the various correlators [21]. All
correlators display similar features and in the following
we shall focus on the photon number correlator hc†ci,
see Fig. 3.
It is instructive to study the expectation value for the

photon number in the normal phase. For ωa ¼ ωc ¼ ω, it is
given by

hc†ci ¼ ðλ2x − λ2yÞ2
2½κ2λxλy þ ðλx þ λyÞ2ω2�

×
ω2ðω2 þ κ2 þ 4λxλyÞ

f16λ2xλ2y þ ω2½ω2 þ κ2 − 4ðλ2x þ λ2yÞ�g
: ð8Þ

In theDicke limit, where λi → λcwhile λj ¼ 0with i ≠ j, the
photon number diverges with an exponent of 1, as expected
[12]. Note, however, that away from the Dicke limit, the
critical regime of the Dicke-like transitions shrinks. This is
consistent with the fact that themulticritical point is expected

to have zero fluctuations [21]. For the case λx ¼ λy, we find
that the set of ten equations is no longer invertible. However,
a reduced solvable set exists for which the photon fluctua-
tions vanish. This is a remarkable result which shows that
even weak cavity dissipation which technically preserves the
length of the spin destroys an ordered phase.
The specific features of the QPTs in the IDTC model can

be inferred by considering photon number fluctuations
along three representative cuts in the λx-λy plane shown in
Fig. 3(a). Along I, where at least one of the couplings is
below λc [top panel of Fig. 3(b)], as expected for a
continuous Dicke-like QPT, cavity fluctuations diverge
continuously across both sides of the transition with critical
exponent 1. Across cut II [bottom panel of Fig. 3(b)], where
either λx or λy is greater than λc, the loss of the brokenUð1Þ
phase results in discontinuous first-order transitions
between the NP and the two SP phases concomitant with
coexistence regions. Cavity fluctuations, though enhanced,
remain finite and exhibit a jump across the phase bounda-
ries. The widths of the coexistence regimes effectively
indicate the size of hysteresis loops that will appear under
scans of the couplings. In contrast to standard tricritical
points that arise in systems as diverse as 3He–4He mixtures
[31] and high-Tc superconducting vortex lattices [41], the
fluctuations at the two out-of-equilibrium tricritical points
of the IDTC model remain finite. The scaling of these
fluctuations with dissipation is illustrated in Fig. 3(c) for
cut III, which shows that fluctuations diminish as the two
tricritical points approach the original multicritical point.
We have shown that weak dissipation can dramatically

alter the paradigm of standard continuous symmetry

(a) (c)(b)

FIG. 3. (a) Density plot of the photon number fluctuations calculated on top of the stable mean-field solutions. ln fhc†ci þ 1g is
plotted for clarity. Green, blue, and red refer to fluctuations on top of the normal phase and the two superradiant phases, respectively. The
standard Dicke-like transitions exhibit expected continuous second-order transition lines, which morph into two first-order lines
marking the regions of coexisting solutions. There are no fluctuations along the Tavis-Cummings line (cf. Ref. [26]), and due to
dissipation, the zero-fluctuation region broadens in the IDTC phase space. (b) Cuts with couplings λ along lines I (top panel) and II
(bottom panel) of plot (a). Top panel: Dicke-like transitions where the fluctuations continuously diverge on both sides of the critical
point with exponent 1. Bottom panel: One sided first-order phase transitions marking the boundaries of the NP (green) and the two SPs
(blue and red). (c) Cut with couplings λ along the line III of plot (a) for different values of κ=ω. As κ decreases, the fluctuations decrease
and the separation between the two SPs shrinks, eventually recovering the closed system behavior and the multicritical point. In all plots
ω ¼ ωc ¼ ωa and γ ¼ 0. In (a) and (b) κ=ω ¼ 0.1.

PHYSICAL REVIEW LETTERS 120, 183603 (2018)

183603-4



breaking phase transitions in a model system exhibiting
multicriticality. Additionally, the dissipation induced tricrit-
ical points are characterized by anomalous quantum fluc-
tuations. We expect our results to be qualitatively valid for
other dissipation channels provided the spin is conserved.
Extending our work to variants of the IDTC model with
(i) higher-spin systems, (ii) negatively detuned frequencies
where interesting oscillatory behavior are expected
(cf. Ref. [19]), (iii) additional cavity fields (cf. Ref. [42]),
(iv) dephasing and non-spin-conserving dissipation, and
(v) quenched dynamicswill further reinforce our predictions
for existing experiments [18,19]. Our work also motivates a
study of potential brittle multicritical phenomena in quan-
tum engineered systems, and in out-of-equilibrium matter
systems as well as the influence of non-Markovian noise on
such phase diagrams.
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