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Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions
between standard model particles. Here, we carry out the first search for semileptonic spin-dependent
interactions between matter and antimatter. We compare theoretical calculations and spectroscopic
measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-
dependent interactions between electrons and antiprotons.
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Antiprotonic helium (Heþp̄) is a helium atom where one
of the electrons is replaced with an antiproton. Antiprotonic
helium, being a relatively simple matter-antimatter bound
state, can provide insight into possible exotic matter-
antimatter interactions. Since the first observations of
relatively long-lived (lifetimes of the order of microsec-
onds) antiprotonic helium atoms in 1991 [1], there have
been significant developments in experimental techniques.
The latest achievements include determining the antiproton
magnetic moment [2] (this result, utilizing the antiprotonic
helium, was improved later with direct measurements
[3,4]), resolving the hyperfine structure of 3Heþp̄ [5] and
precise measurements of the antiproton-to-electron mass
ratio [6]. Furthermore, theoretical calculations of transition
energies in antiprotonic helium have reached agreement
with the experiment at a level of one part in 109 or better in
many cases [7–11]. An extensive summary of research on
antiprotonic helium prior to 2002 can be found in Ref. [12].
The principal focus of antimatter research to date has

been on tests of CPT invariance [13], for example, by
measuring the properties of the antiproton [2–4,6], and on
constraining Yukawa-type spin-independent forces [14,15].
In this Letter, we show that one can also search for exotic
spin-dependent interactions between matter and antimatter
from precise measurements and QED-based calculations of
antiprotonic helium.
Spin-dependent interactions [16,17] (see also Ref. [18]

for a review) appear in theories including “new,” i.e., so far

undiscovered bosons such as axions [19–24], familons
[25,26], Majorons [27,28], arions [29], new spin-0 or
spin-1 gravitons [30–33], Kaluza-Klein zero modes in
string theory [34], paraphotons [35–37], and new Z0 bosons
[38–40]. These new bosons are introduced to solve prob-
lems such as the nature of dark matter [41] and dark energy
[42,43], the strong-CP problem [16], and the hierarchy
problem [44].
The most commonly employed framework for the

purpose of comparing different experimental searches for
exotic spin-dependent interactions is that introduced in
Ref. [16] to describe long-range spin-dependent potentials
associated with the axion and later extended in Ref. [17]
to encompass long-range potentials associated with any
generic spin-0 or spin-1 boson. Some issues related to the
velocity-dependent potentials presented in Ref. [17] were
pointed out in Ref. [45]. The spin-dependent potentials
enumerated in Ref. [17] are characterized by dimensionless
coupling constants that specify the strength of the inter-
action between various particles and a characteristic range
parameter ƛ for the interaction associated with the reduced
Compton wavelength of the new boson of mass m0,
ƛ ¼ ℏ=ðm0cÞ, where ℏ is the reduced Planck’s constant
and c is the speed of light. Depending on the nature of the
new interaction, different particles will generally have
different coupling constants.
To date, the constraints on exotic spin-dependent inter-

actions between matter and antimatter have concerned
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leptonic interactions, and they are derived from hydrogen-
like atoms: positronium [46–48] and muonium [48–50].
In the following, we constrain spin-dependent interactions
between an electron and an antiproton (a semileptonic
interaction). We do this in a similar manner to Ref. [45],
by comparing experimental results for the hyperfine struc-
ture of 4Heþp̄ [2] and QED-based calculations [51] and
using our calculated expectation values of spin-dependent
potentials.
The structure of this Letter is as follows. We begin by

constructing approximate wave functions describing the
antiprotonic helium atom. Then we present the relevant
exotic potentials. Finally, we use first-order perturbation
theory on the aforementioned wave functions and potentials
to obtain constraints on the interaction parameters of interest.
Since the electron mass me is much smaller than the

nuclear (alpha particle) and antiproton masses, mnucl and
mp̄, respectively, the approximate Hamiltonian describing
antiprotonic helium has the form [52]:

Ĥ ¼
�
−

ℏ2

2μp̄
∇2

p̄ −
2e2

jrp̄j
�
þ
�
−

ℏ2

2me
∇2

e −
2e2

jrej
�
þ e2

jrp̄ − rej
;

ð1Þ

where e is the elementary charge, μp̄ ¼ mnuclmp̄=
ðmnucl þmp̄Þ is the reduced mass of the antiproton, rp̄
and re are the position vectors of the electron and anti-
proton with respect to the nucleus (Fig. 1), and ∇p̄ and ∇e

are Laplacians in the coordinates rp̄ and re.
The strength of any hypothetical exotic spin-dependent

interaction between two charged particles is orders-of-
magnitude smaller than their electromagnetic interaction.
Based on this, a high-precision calculation of the pertur-
bation due to exotic effects is not required, and it is
sufficient to calculate the exotic contributions to first order
in perturbation theory. For these calculations, a relatively
simple form of the approximate wave functions of the
antiproton and electron may be assumed. In the following,
we focus on antiprotonic helium with the antiproton in the
ðn; lÞ ¼ ð37; 35Þ state and the electron in the (1,0) state
(where the first number in an ordered pair is the principal
quantum number, and the second one is the orbital angular

momentum), since there are both relatively precise exper-
imental data and theoretical calculations available for this
system [2,51]. We use the approximate spatial wave
function [53]

Ψm̃p̄
ðrp̄; reÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p h
ψ ðp̄Þ
37;35;m̃p̄

ðrp̄Þψ ðeÞ
1;0;0ðreÞ

− βψ ðp̄Þ
36;35;m̃p̄

ðrp̄Þψ ðeÞ
1;0;0ðreÞ

i
; ð2Þ

where β is a numerical constant and ψ ðaÞ
n;l;m̃ is a generalized

hydrogenlike atom wave function [54] for a particle a with
a principal quantum number n, an orbital angular quantum
number l, and a magnetic quantum number m̃:

ψ ðaÞ
n;l;m̃ðr; θ;ϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðZðaÞ

n Þ3μ3ðn − l − 1Þ!
n4ðnþ lÞ!

s �
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n μðaÞr
n

�l

× e−
Z
ðaÞ
n μðaÞr

n L2lþ1
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�
2ZðaÞ

n μðaÞr
n

�
Ym̃
l ðθ;ϕÞ:

ð3Þ

In formula (3), μðaÞ denotes the reduced mass of particle a,
(μðp̄Þ ¼ μp̄), μðeÞ ≈me, ZðaÞ is the effective charge seen by
particle a in a state with a principal quantum number n,
L2lþ1
n−l−1 is the generalized Laguerre polynomial, and Ym

l is

the spherical harmonic function. The parameters β and ZðaÞ
n

are derived using the variational method [57].
To get a full approximate wave function of the consid-

ered system, we need to add the spinor component to the
spatial wave function (2). In the (37,35) state, the total
orbital angular momentum of the atom is L ¼ 35. Let us
then denote by j35; m̃Li the vector corresponding to the
spatial wave function Ψm̃p̄

. The interaction between the
orbital motion and the electron spin is the strongest among
the angular-momentum-dependent interactions in antipro-
tonic helium [7], so we first add the orbital angular
momentum to the electron spin, obtaining F ¼ Lþ se.
We then include the antiproton’s spin to obtain the total
angular momentum J ¼ F þ sp̄ [58]. This addition
scheme introduces the hyperfine structure shown in
Fig. 2. We may characterize any hyperfine state in the
(37,35) manifold using three numbers: J , m̃J , and F .
We build these states using the Clebsh-Gordan coefficients
CJ;mJ
j1;m1;j2;m2

:

jJ ; m̃J ;F i ¼
X

m̃F ;m̃sp̄

CJ ;m̃J
F ;m̃F ;sp̄;m̃sp̄

jF ; m̃F ijsp̄; m̃sp̄i

¼
X

m̃F ;m̃sp̄

X
m̃L;m̃se

CJ ;m̃J
F ;m̃F ;sp̄;m̃sp̄

CF ;m̃F
L;m̃L;se;m̃se

× j35; m̃Lijse; m̃seijsp̄; m̃sp̄i: ð4ÞFIG. 1. Schematic diagram of the antiprotonic helium atom.
The nucleus is an alpha particle.
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Because of the rotational invariance of the Hamiltonian and
the exotic spin-dependent potentials considered below, the
respective matrix elements do not depend on the specific
m̃J value, so we denote the hyperfine structure states
by jJ ;F i.
Reference [2] presented the results of measurements of

energies for the transitions j35; 35.5i ↔ j34; 34.5i (denoted
as ν−HFS) and j36; 35.5i ↔ j35; 34.5i (denoted as νþHFS)
along with the theoretically predicted values calculated in
Refs. [51]. We compare them in Table I and present the
values of ΔE—a quantity constraining exotic interactions at
a 90% acceptance level. We define it in such a way that

Z þΔE

−ΔE

1ffiffiffiffiffiffi
2π

p
σ
e−ðx−μÞ2=ð2σ2Þdx ¼ 0.9; ð5Þ

where μ is the mean difference between theoretical and
experimental transition energies and σ2 ¼ σ2th þ σ2exp (σth
and σexp are here theoretical and experimental uncertainties,
respectively). These values ofΔE, characterizing the level of
agreement between theory and experiment, taking into
account the uncertainties of both, are used to constrain
the exotic interactions.
In Ref. [17], Dobrescu and Mocioiu introduced 16

independent spin-spin interactions. For studies of exotic
spin couplings using 4Heþp̄, only those interactions that are
invariant under spatial inversion and time reversal are
relevant. These two conditions allow shifts of energy levels
in first-order perturbation theory. There are five spin-
dependent potentials that satisfy these requirements: two

velocity-independent potentials and three velocity-depen-
dent potentials. In the coordinate-space representation they
have the form [45]

V2 ¼ fep̄2
ℏc
π
ðsp̄ · seÞ

e−r=ƛ

r
; ð6Þ

V3 ¼ fep̄3
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ec

�
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�
1
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þ 1
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þ 4π

3
δ3ðrÞ

�

− ðsp̄ · rÞðse · rÞ
�

1

ƛ2r3
þ 3

ƛr4
þ 3

r5

��
e−r=ƛ; ð7Þ

V4–5 ¼ fep̄4–5
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V8 ¼ −fep̄8
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4πm2
ec

�
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�
me
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mp̄
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�
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�
sp̄ ·

�
me
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�
;
e−r=ƛ

r

�
þ

�
þ
;

ð10Þ

where fep̄i is the dimensionless coupling parameter of the
ith interaction between the electron and the antiproton,
r ¼ re − rp̄ is the position vector directed from the anti-
proton to the electron, r is the distance between the electron
and antiproton, ∇p̄ and ∇e are the vector differential
operators in the coordinate space of the antiproton and
the electron, respectively, and sp̄ and se are the spins of the
antiproton and the electron, respectively. By ½·; ·�þ we
denote an anticommutator. Let us point out that the mass
ratios present in the velocity-dependent potentials, appear
in their derivation [45] when one considers particles
with different masses. We also study V4�5 rather than

TABLE I. Experimental and theoretical transition energies between hyperfine-structure states in the ðn; lÞ ¼
ð37; 35Þ manifold, along with their differences and values of ΔE, a parameter describing the level of agreement
between theoretical and experimental results and taking into account their uncertainties. We define ΔE at the
90% Confidence Level (C.L.) in Eq. (5).

Experiment [2] Theory [51] Difference ΔE (at 90% C.L.)

νþHFS 12.896 641(63) GHz 12.8963(13) GHz 0.3(1.3) MHz 2.2 MHz
ν−HFS 12.924 461(63) GHz 12.9242(13) GHz 0.3(1.3) MHz 2.2 MHz

FIG. 2. Hyperfine structure of the ðn; lÞ ¼ ð37; 35Þ state of an
antiprotonic helium atom. The transitions denoted by ν�HFS were
investigated in Ref. [2].
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V4 and V5, as their coupling constants have more natural
interpretations [17].
The potentials V4−5 and V4þ5 have exactly the same

orbital part and differ only in the spin part (they contain
antiprotonic and electronic spin, respectively). We are
interested in the states with high orbital number
(L ¼ 35) and total angular momentum J ≈ L. For such
states, both spins are either (almost) parallel or antiparallel
to L. We are considering the transitions ν�HFS (see Fig. 2),
where spins may flip, but the orbital part does not change.
Thus, we can say that each of the potentials V4�5

contributes only to the transition where the respective
spin flips. To see how the spins sp̄ and se behave in the
transitions ν�HFS, we need to expand the four states in
question according to Eq. (4). The Clebsh-Gordan coef-
ficients take the simplest form for the states with maximum

projection m̃I . The amplitudes of the states with various
spin projections are presented in Table II. The transition
νþHFS links the first pair of states, while ν−HFS links the last
pair. In the first approximation, both transitions correspond
to an electron spin flip—the admixture of the spin flip of
the antiproton is suppressed roughly by two orders of
magnitude. We see that the expectation value of the
potential V4−5 is practically the same for the upper and
lower states and, therefore, the transition frequencies ν�HFS
are practically not affected by this potential, so we are not
constraining it. For all other potentials, the electron spin flip
causes a sign-change of their expectation values. In the
following, we focus on the potentials V2, V3, V4þ5, and V8.
For every considered potential Vi, we introduce the

operator Vi, defined as Vi ¼ fep̄i Vi. Then we may estimate
the energy shift between states jJ a;F ai and jJ b;F bi
caused by a Vi operator using first-order perturbation
theory and the approximate wave functions as follows:

ΔUab;iðm0Þ ¼ hJ a;F ajViðm0ÞjJ a;F ai
− hJ b;F bjViðm0ÞjJ b;F bi; ð11Þ

where Vi depends on the intermediate boson mass m0, as
can be seen in Eqs. (6)–(10). For the given values of the fep̄i
parameter and the boson mass m0, the exotic potential
causes a shift of the transition energy equal to
fep̄i ΔUab;iðm0Þ. The maximal discrepancy between theory

TABLE II. Amplitudes of the states with different spin projec-
tions. The first arrow corresponds to the projection of the
antiproton spin and the second one denotes the projection of
the electron spin.

jJ ; m̃J ;F i ð↑;↑Þ ð↑;↓Þ ð↓;↑Þ ð↓;↓Þ
j35; 35; 34 1

2
i −0.1187 0.9929 0 0

j36; 36; 35 1
2
i 1 0 0 0

j34; 34; 34 1
2
i 0.0201 −0.1178 −0.1178 0.9858

j35; 35; 35 1
2
i −0.1170 −0.0140 0.9930 0

(a) (b)

(c) (d)

FIG. 3. Constraints (at the 90% confidence level) on the magnitude of the dimensionless coupling constants fep̄i as a function of the
boson mass m0.
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and experiment is equal to ΔE (see Table I), so for any
value of m0, the inequality

jfep̄i ðm0ÞΔUab;iðm0Þj ≤ ΔE ð12Þ

holds. The constraints on the fep̄i parameter values can be
calculated as

jfep̄i ðm0Þj ≤
���� ΔE
ΔUab;iðm0Þ

����: ð13Þ

To obtain constraints on fep̄i as a function of m0, we
perform numerical calculations of ΔUab;i for several m0

values and then interpolate between them to obtain con-
tinuous exclusion plots. We perform this procedure for both
transitions, νþHFS and ν

−
HFS, and choose the more stringent of

the two constraints. The obtained constraints are presented
in Fig. 3.
As can be seen in the exclusion plots, for bosons with

masses larger than several keV=c2, the constraints weaken.
This is explained by the fact that our system is less sensitive to
interactions mediated by bosons with a Compton wavelength
much shorter than the size of the antiprotonic helium atom.
We test our numerically derived constraints by comparing

them with results of theoretical estimates (Table III). For
these considerations, we use atomic units (ℏ ¼ me ¼
jej ¼ 1) and explore the limit of zero boson mass
(ƛ → ∞). The fact that the speed of light is present in
potential V2 as c (in atomic units c ¼ 1=α ≈ 137), while in
the rest of the potentials it comes as c−1 suggests that the
constraints on V2 should be approximately α−2 ∼ 104 times
more stringent than on the other potentials. Additionally, due
to the spherical symmetry of the electron wave function,
for the considered system in potentials V4�5, only the terms
containing derivatives over the antiproton position are
relevant [59]. These terms are suppressed by the factor
me=ðmp̄ þmeÞ ≈ 0.5 × 10−3. Using the virial theorem and
taking the potential energy to be ∼1 a.u. for an antiproton
with n ≈ 35, we may estimate h∇p̄i ∼ ffiffiffiffiffiffiffimp̄

p , which yields

�
me

mp̄ þme
∇p̄

	
∼

meffiffiffiffiffiffiffimp̄
p ≈ 0.02: ð14Þ

The other quantities present in the potentials, such as the
spins, sp̄ and se, particle positions, rp̄ and re, and the

differential operator ∇e, can be considered to be of order
unity. Comparing the approximate expectation values of the
potentials with the value of ΔE≲ 2 MHz ≈ 3 × 10−10 a:u:.
from Table I yields the approximate constraints presented in
Table III. These constraints are similar to the ones coming
from numerical integration. The small differences come from
numerical factors, appearing during integration, which are
neglected in the estimations. The comparison of constraints
obtained in these two ways also yields the conclusion that
the use of first-order perturbation theory is justified, as the
first order contributions to the energies are not suppressed
and therefore are much bigger than the higher order terms.
In conclusion, for the first time, semileptonic spin-

dependent interactions between matter and antimatter have
been constrained. This investigation represents an entirely
different branch of matter-antimatter comparison tests,
complementary to research constraining coupling of exotic
bosons to hadronic matter. We obtained the presented
results by investigating hypothetical antiproton-electron
spin-dependent interactions in antiprotonic helium.
Moreover, this analysis provides the first constraints on
velocity-dependent spin-dependent matter-antimatter inter-
actions. Our constraints were obtained by comparing
theoretical predictions and laboratory results, together with
our calculated expectation values of exotic potentials. The
current accuracy of the experiment [2] is 20 times higher
than the accuracy of the theory [51]. Further improvement
in the theory can improve limits obtained in the present
work by an order of magnitude.
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