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The parity-odd effect in the standard model weak neutral current reveals itself in the long-range parity-
violating nuclear potential generated by the pion exchanges in the ΔI ¼ 1 channel with the parity-odd pion-
nucleon coupling constant h1π . Despite decades of experimental and theoretical efforts, the size of this
coupling constant is still not well understood. In this Letter, we derive a soft-pion theorem relating h1π and the
neutron-proton mass splitting induced by an artificial parity-even counterpart of theΔI ¼ 1weak Lagrangian
and demonstrate that the theorem still holds exact at the next-to-leading order in the chiral perturbation theory.
A considerable amount of simplification is expected in the study of h1π by using either lattice or other
QCD models following its reduction from a parity-odd proton-neutron-pion matrix element to a simpler
spectroscopic quantity. The theorem paves the way to much more precise calculations of h1π , and thus a
quantitative test of the strangeness-conserving neutral current interaction of the standard model is foreseen.
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The study of the standard model (SM) parity (P)
violation in nonleptonic processes is extremely difficult
due to the overwhelming background of the strong inter-
action governed by quantum chromodynamics (QCD).
Nevertheless, it is essential in order to better understand
the general properties of the hadronic weak interaction and
shed light on many unresolved puzzles such as the
unexpectedly large violation of Hara’s theorem in the
hyperon weak radiative decays and the failure to simulta-
neously fit the S- and P-wave amplitudes of the hyperon
decays. The P violation in the strangeness-conserving,
ΔI ¼ 1 nucleon-nucleon interaction is a perfect ground to
study the properties of the neutral weak current in hadronic
systems which is otherwise poorly constrained, as it cannot
be probed in the usual strangeness-changing weak proc-
esses due to the absence of a tree-level flavor-changing
neutral current [1]. Ongoing P-violation experiments with
an unprecedented level of precision (see the discussion
below) call for a new round of theoretical study of the
hadronic P violation so that the experimental results can be
utilized to their largest extent in testing our current under-
standing of the SM hadronic weak interaction.
On the theory side, Desplanques, Donoghue, and

Holstein (DDH) [2] formulated both the P-conserving
(due to the strong interaction) and the P-violating (due
to the weak interaction including all ΔI ¼ 0, 1, 2 channels)
nucleon-nucleon interaction in terms of the single exchange

of the lowest-lying light mesons, i.e., π, ρ, and ω. This
description forms the basis of many experimental analyses.
More recently, the description of the P-violating nucleon-
nucleon forces and the associated currents has been based
on effective field theory (EFT) frameworks such as the
pionless EFT [3,4] or the chiral EFT [5–7]. Experimental
progress has been made as well, although mainly in the last
decades of the previous century, as exemplified by mea-
surements of the P-violating longitudinal analyzing powers
(LAPs) [8–12], the gamma-ray asymmetries [13–17], and
the gamma-ray circular polarization [18–23]. For recent
reviews, we refer to Refs. [1,7,24].
A long-standing problem in the field of hadronic P

violation is the theoretical determination of the P-odd
hadronic coupling constants. Since the underlying weak
operators and their Wilson coefficients are rather well
known, the outstanding problem is to compute the asso-
ciated hadronic matrix elements directly with nonpertur-
bative methods or to fit them to data. In particular, the
P-violating,ΔI ¼ 1 pion-nucleon coupling h1π has attracted
much attention, as it is formally the single leading-order
(LO) operator in the chiral EFT framework [25]. As such,
it is expected to dominate the long-range part of the P-
violating nucleon-nucleon potential and the resultingP-odd
phenomenology in various processes. The above conclu-
sion, however, depends crucially on the actual size of h1π ,
and, if it turns out smaller than originally expected, other
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P-violating hadronic interactions can become dominant.
Such interactions are described by the P-odd couplings
between nucleons and heavier mesons (like the ρ and ω)
in the DDH approach or as the P-odd nucleon-nucleon
contact [5,26] and derivative pion-nucleon [27] interactions
in the EFT language.
The simplest order-of-magnitude estimate of the size of h1π

is based on the naive dimensional analysis which gives h1π ∼
OðGFFπΛχÞ ∼ 10−6 in terms of the Fermi constant GF, the
pion decay constant Fπ, and the chiral-symmetry-breaking
scale Λχ . This estimate does not capture the potential
suppression due to powers of sin θW or large Nc arguments
[1,28]. In the DDH paper, a “reasonable range” for h1π is
given as ð0–11Þ × 10−7 together with a “best value” around
4.6 × 10−7 based on a quark model and SU(6) flavor-spin
symmetry. Other phenomenological studies of h1π include the
use of quark models [29–31], Skyrme models [32–34], and
QCD sum rules [35,36]. In general, both the quark model
and QCD sum rules predict an order of 10−7 for h1π;
meanwhile, early chiral Skyrmion approaches [32,33] pre-
dictOð10−8Þ, but subsequent work [34] gives 10−7, all rather
small values that are difficult to probe experimentally.
On one hand, such small values are in good agreement

with the absence of a P-odd signal in the γ emission from
18F, which gives an upper bound of h1π ≤ 1.3 × 10−7

[15,23,37]. On the other hand, the size of the Cs anapole
moment [38,39] indicates a larger h1π, and the same holds
for the measurement of the LAP in proton-alpha scattering
[12,40]. The interpretation of the latter experiments,
however, suffers from significant theoretical uncertainties
due to the complicated systems involved in the experi-
ments. A more promising approach seems to rely only
on experiments involving a few nucleons, where the
nuclear theory is under better control. In this light,
Refs. [6,41] tried to extract h1π from measurements of
the proton-proton LAP. Unfortunately, h1π contributes
only to the proton-proton scattering at the subleading
order, leading to a large uncertainty on the extraction
h1π ¼ ð1.1� 2.0Þ × 10−6. More promising is the extraction
of h1π from the upcoming measurement of the gamma-ray
asymmetry in the neutron capture on the proton by the
NPDGamma Collaboration [42,43].
In view of these experimental efforts to extract h1π , there

is the need to calculate its value reliably using, e.g., lattice
QCD, in order to quantitatively test the strangeness-
conserving neutral current aspect of the SM. So far, the
only direct lattice QCD calculation of h1π was attempted in
Ref. [44] by studying a three-point correlation function.
The result was incomplete partially due to its inability to
extract signals from the so-called quark-loop diagram,
which suffered from a too small signal-to-noise ratio.
The existence of an explicit pion in the final state also
brought about extra technical complications. For example,
an extra total-derivative operator with an unknown

coefficient must be introduced for the insertion of energy
into the weak vertex.
In this Letter, we propose a new starting point for the

theoretical investigation of h1π by deriving a soft-pion
theorem. This theorem relates h1π to the neutron-proton
mass splitting induced by an artificial P-even counterpart
of the ΔI ¼ 1 weak Lagrangian. This approach is parallel to
one of the techniques in the study of P-and-time-reversal-
odd pion-nucleon coupling ḡiπ , which also attempts to relate
ḡiπ to the nucleon mass shifts generated by the underlying
P-even operators. Such relations were first derived using the
current algebra [45,46] and later refined under the frame-
work of the chiral perturbation theory (ChPT) [47–52]. In its
application to h1π , we find that the simple matching relation
derived in the LO ChPT is exactly preserved by all
corrections at the next-to-leading order (NLO), i.e.,
OðM2

π=Λ2
χÞ with Mπ the pion mass and Λχ ≈ 1 GeV the

chiral-symmetry-breaking scale, including both the one-loop
and low-energy constant (LEC) contributions, which is a
unique feature not shared by ḡiπ. Hence, the accuracy of such
a simple matching relation is expected to be better than one
percent. Considerable advantages are expected by studying
the neutron-proton mass splitting instead of h1π itself using
either lattice QCD or other nonperturbative approaches.
We start by reviewing the underlying physics of the

flavor-conserving nuclear P violation in the SM. Well
below the electroweak scale, the W or Z bosons can be
integrated out in exchange of four-quark operators in the
form of current-current products. In the limit of vanishing
Cabibbo angle θC, the charged current will not contribute to
the ΔI ¼ 1 parity violation, and in reality it is suppressed
by sin2 θC ≃ 0.05. Hence, the flavor-conserving ΔI ¼ 1
parity-violating nuclear processes serve as a unique probe
to test the otherwise poorly constrained neutral current
interaction of the SM. If one considers only the three
lightest quarks, the effects of P violation in the ΔS ¼ 0,
ΔI ¼ 1 channel are carried by seven independent P-odd
four-quark operators which take the following form [53]
(there is another operator θ4 defined in Ref. [25], but it is
not independent from fθ1; θ2; θ3g):

Lw
PV ¼ −

GFffiffiffi
2

p sin2θW
3

X
i

ðCð1Þ
i θi þ Sð1Þi θðsÞi Þ; ð1Þ

where

θ1 ¼ q̄aγμqaq̄bγμγ5τ3qb; θ2 ¼ q̄aγμqbq̄bγμγ5τ3qa;

θ3 ¼ q̄aγμγ5qaq̄bγμτ3qb;

θðsÞ1 ¼ s̄aγμsaq̄bγμγ5τ3qb; θðsÞ2 ¼ s̄aγμsbq̄bγμγ5τ3qa;

θðsÞ3 ¼ s̄aγμγ5saq̄bγμτ3qb; θðsÞ4 ¼ s̄aγμγ5sbq̄bγμτ3qa:

ð2Þ
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Here q ¼ ðu; dÞT is the quark isospin doublet field, s is the
strange quark field, fa; bg are color indices, and θW is
the weak mixing angle. The mixing of these operators
under one-loop perturbative QCD corrections introduces a

scale dependence to the Wilson coefficients fCð1Þ
i ; Sð1Þi g

[25,53,54]. The uncertainties of the Wilson coefficients are
relatively under control: For instance, the higher-order
corrections to the LO QCD running are generally of the
order of 10%–20% [53].
The ΔI ¼ 1 P-violating coupling constants in either the

DDH formalism or the EFT description are then just the
QCD matrix elements of the Lagrangian (1) at the scale
μ ≈ Λχ with respect to appropriate external hadronic
states. The aim of this Letter is to relate these matrix
elements to another set of P-even matrix elements with
fewer external states. The easiest way to understand this
formalism is to realize that the partially conserved axial
current relation relates matrix elements with and without a
soft external pion:

lim
pπ→0

hN0πijLw
PVjNi ≈ i

Fπ
hN0j½Lw

PV; Q̂
i
A�jNi; ð3Þ

where Q̂i
A is the axial charge; the right-hand side can be

further reduced to a flavor-diagonal matrix element through
the Wigner-Eckart theorem. This observation inspires us to
construct a P-even chiral partner of Lw

PV as follows:

Lw
PC ¼ −

GFffiffiffi
2

p sin2θW
3

X
i

ðCð1Þ
i θ0i þ Sð1Þi θðsÞ0i Þ; ð4Þ

where

θ01 ¼ q̄aγμqaq̄bγμτ3qb; θ02 ¼ q̄aγμqbq̄bγμτ3qa;

θ03 ¼ q̄aγμγ5qaq̄bγμγ5τ3qb;

θðsÞ01 ¼ s̄aγμsaq̄bγμτ3qb; θðsÞ02 ¼ s̄aγμsbq̄bγμτ3qa;

θðsÞ03 ¼ s̄aγμγ5saq̄bγμγ5τ3qb; θðsÞ04 ¼ s̄aγμγ5sbq̄bγμγ5τ3qa:

ð5Þ

Regardless of the DDH formalism or the (pionful) EFT
description, the long-range P-violating nuclear potential
always features pion exchanges. If we write N ¼ ðp; nÞT
as the nucleon isospin doublet, then there are four kinds
of NNπ couplings one could write down in terms of the
isospin decomposition: N̄ τ⃗ ·π⃗N, π0N̄N, N̄ðτ⃗ × π⃗Þ3N, and
N̄ðτ⃗ · π⃗ − 3π0τ3ÞN, where the first term has ΔI ¼ 0, the
second and third terms have ΔI ¼ 1, and the last term has
ΔI ¼ 2. Since Barton’s theorem [55] excludes the possibility
of exchanging neutral pseudoscalars in the CP-conserving
limit, the only available structure is N̄ðτ⃗ × π⃗Þ3N, which has
ΔI ¼ 1 and is therefore dominated by the neutral current

contribution. The LOP-odd pion-nucleon coupling term can
thus be written as

Lw
PV ¼ −

h1πffiffiffi
2

p N̄ðτ⃗× π⃗Þ3N þ � � � ¼ ih1πðn̄pπ− − p̄nπþÞþ � � � ;

ð6Þ

where the pion-nucleon coupling constant h1π may be
expressed in terms of the hadronic matrix element

h1π ¼ −
i

2mN
lim
pπ→0

hnπþjLw
PVð0Þjpi: ð7Þ

Here mN is the averaged nucleon mass.
We shall now derive the promised soft-pion theorem using

the ChPT. As far as this work is concerned, it is sufficient to
restrict ourselves to the SU(2) version of the ChPT, since
strangeness is conserved in the weak Lagrangian of our
interest. We should stress that this does not mean that we are
disregarding the effects of the operators with strange fields,

i.e., fθðsÞi g; they are just having the same isospin structure as
the nonstrange operators fθig and can be described by the
same spurion involving only SU(2) indices, as we shall
demonstrate later. The LO chiral Lagrangians for QCD in the
pion and nucleon sector are given by

Lπ ¼
F2
0

4
Tr½∂μU∂μU†� þ F2

0B0

2
Tr½MqU† þ UM†

q�;
LN ¼ N̄iv ⋅ DN þ gAN̄uμSμN; ð8Þ
respectively. Here we adopt the standard notations of the
ChPT as in Ref. [56]: U ¼ expfiπ⃗ · τ⃗=F0g, u ¼ ffiffiffiffi

U
p

, and
uμ ¼ iðu†∂μu − u∂μu†Þ, while Mq ¼ diagðmu;mdÞ is the
quark mass matrix that gives rise to the LO pion mass
M2

π ¼ B0ðmu þmdÞ. In the nucleon sector, we adopt
the heavy baryon chiral perturbation theory formalism
[57,58] so that the nucleon field N appears as a massless
excitation with four-velocity v and the chiral covariant
derivative Dμ ¼ ∂μ þ ðu†∂μuþ u∂μu†Þ=2. The finite
quark mass effect could be implemented to the baryon
Lagrangian at higher orders through the matrices
χ� ¼ 2B0ðu†Mqu† � uM†

quÞ. Next, we turn to the discus-
sion of the weak chiral Lagrangian. The effects of both Lw

PV
and Lw

PC can be implemented into the chiral Lagrangian by
means of the spurion method. To understand the procedure,
we first combine the two Lagrangians to obtain

Lw
tot ¼ Lw

PV þ Lw
PC ¼ −

GFffiffiffi
2

p sin2θW
3

X
i

ðCð1Þ
i θ̃i þ Sð1Þi θ̃ðsÞi Þ;

ð9Þ

where θ̃i ¼ θi þ θ0i and θ̃
ðsÞ
i ¼ θðsÞi þ θðsÞ0i . One immediately

observes that the operators fθ̃i; θ̃ðsÞi g break the SU(2) chiral
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symmetry via the matrix τ3. Therefore, the effect of Lw
tot

can be implemented to the chiral Lagrangian through a
Hermitian, traceless spurion, XR ¼ u†τ3u. The LO weak
Lagrangian in the nucleon sector that incorporates such a
spurion is simply [25,59]

Lw
tot;LO ¼ αN̄XRN

¼ αN̄τ3N −
ffiffiffi
2

p
i

F0

αðn̄pπ− − p̄nπþÞ þ � � � ; ð10Þ

where α is an unknown LEC. In the second line, we have
expanded the Lagrangian to the first power of the pion field;
the first term corresponds to the neutron-proton mass
splitting, while the second corresponds to the P-odd pion-
nucleon coupling. The fact that they share the same LEC α
implies a relation between these two quantities:

Fπh1π ≈ −
ðδmNÞ4qffiffiffi

2
p ; ð11Þ

where ðδmNÞ4q is the neutron-proton mass splitting induced
by Lw

PC:

ðδmNÞ4q ¼
1

mN
hpjLw

PCð0Þjpi ¼ −
1

mN
hnjLw

PCð0Þjni: ð12Þ

Equation (11) is the central result of our Letter, and it is
derived from the LO ChPT. Next, we consider the NLO
effects due to both one-loop diagrams and LECs to this
tree-level relation. The relevant one-particle irreducible
loop diagrams are depicted in Fig. 1. Meanwhile, one also
needs to compute the renormalization of Fπ as well as the
wave function renormalization of the pion field. They are
given by

δðFπÞ ¼ −
Ie
F2
π
þM2

π

Fπ
l4;

ffiffiffiffiffiffi
Zπ

p
− 1 ¼ Ie

3F2
π
−
M2

π

F2
π
l4;

ð13Þ

where l4 is the well-known Oðp4Þ LEC in the SU(2)-
mesonic chiral Lagrangian [60]. The total one-loop cor-
rection to the left- and right-hand side of Eq. (11), including
both the one-particle irreducible and wave function renorm-
alization contributions, reads (the one-loop correction to h1π
was previously calculated in Ref. [61])

δðFπh1πÞloop ¼
�
g2A
F2
π
Ia −

1

F2
π
Ie þ δZN

�
Fπh1π;

δ(ðδmNÞ4q)loop ¼
�
g2A
F2
π
Ia −

1

F2
π
Ie þ δZN

�
ðδmNÞ4q; ð14Þ

where

Ia ¼ −
3M2

π

64π2

�
Rπ þ

2

3

�
; Ie ¼

M2
π

16π2
Rπ; ð15Þ

with Rπ¼½2=ðd−4Þ�þγE− lnð4πÞ−1þ lnðM2
π=μ2Þ and μ

the renormalization scale, are the loop functions defined
in Ref. [50], and ZN ¼ 1þ δZN is the nucleon wave
function renormalization whose explicit form does not
concern us. From Eq. (15), one observes that the loop
corrections to both sides of Eq. (11) simply result in a
common multiplicative factor, so the matching relation is
unaltered by one-loop corrections. The results above are
obviously incomplete, because one needs to introduce the
NLO weak chiral Lagrangian simultaneously in order to
absorb the ultraviolet divergences in the loop diagrams as
well as to render the final expressions scale independent.
Such a Lagrangian involves a single insertion of the quark
mass matrix. There are only two independent terms at this
order [59]:

Lw
tot;NLO ¼ c̃1N̄fχþ; XRgN þ c̃2TrðχþÞN̄XRN: ð16Þ

Their contributions are

δðh1πÞLEC ¼ −
8

ffiffiffi
2

p

F0

B0m̄ðc̃1 þ c̃2Þ;

δ(ðδmNÞ4q)LEC ¼ 16B0m̄ðc̃1 þ c̃2Þ; ð17Þ

where m̄ ¼ ðmu þmdÞ=2. We find that the quantities
δðh1πÞLEC and δ(ðδmNÞ4q)LEC also satisfy the matching
relation in Eq. (11). Therefore, the soft-pion theorem
relating h1π to ðδmNÞ4q is protected against all corrections
of NLO, including both the one-loop and LEC contribu-
tions and without assuming isospin symmetry. Hence, we
expect the accuracy of such a relation to be better than
ðMπ=ΛχÞ2 ∼ 1% when the light quark masses take the
physical values.
In the conventional approach, the h1π coupling is

extracted from the hadronic matrix element involving the
nucleon-pion state. Such a hadronic matrix element can be

FIG. 1. One-loop diagrams that contribute to h1π [(a)–(d)] and
ðδmNÞ4q [(e),(f)]. The black dot and gray box denote the ΔI ¼ 1
NNπ and NN weak vertex insertion, respectively. Self-energy
diagrams are not shown explicitly.
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calculated nonperturbatively using lattice QCD. However,
it would cause three complexities.
(i) The nucleon-pion state is a rescattering state. As a

result, the hadronic matrix element calculated in the finite
lattice box suffers from a power-law finite-volume effect.
Only after the appropriate finite-volume correction [62] can
the hadronic matrix element in the finite volume be related
to the physical one in the infinite volume.
(ii) Because of the inequality of the energies of the on-

shell nucleon and the nucleon-pion state, the weak four-
quark operator involves an energy insertion. As the injected
energy must exceed E ≥ Mπ þmn −mp, the LO effect of
the energy insertion scales as ffiffiffiffiffiffimq

p and may dominate over
the loop correction in the ChPT. This LO contamination
can be removed by the antisymmetric combination of the
forward ðp → nπÞ and backward ðnπ → pÞ transitions
[59], but the higher-order terms ∼mq still remain.
Although the systematical effect associated with the non-
zero energy insertion vanishes in the chiral limit, it still
complicates the lattice calculation, as nonzero quark
masses are used in the simulation.
(iii) Although a three-quark interpolating operator can be

used to create the nucleon-pion state in the Swave [44], it is
known from lattice QCD that the overlapping amplitude
between a three-quark operator and a two-hadron state can
be significantly suppressed [63]. To gain a better precision,
it is desirable to use a nucleon-pion interpolating operator
to build the correlation function. However, it would make
the quark contractions more complicated and the calcu-
lation more expensive.
By relating the P-violating hadronic matrix element to the

P-conserving one using Eq. (11), one can reduce a nucleon-
pion state to a single nucleon state. As a consequence, all
of the three complexities mentioned above disappear, and
the calculation is much simplified. Considering the fact that
the only existing lattice calculation performed at Mπ ≃
389 MeV yields a result with ∼50% statistical uncertainty
[44], it is an important intermediate step to study the P-
conserving matrix element as an alternative. Using the
Feynman-Hellmann method proposed in Ref. [64], one
can calculate ðδmNÞ4q using the correlation functions of a
single time variable, which simplifies the procedure to
remove the excited-state contamination.
Finally, the soft-pion theorem shown here also brings

benefits to other diagram-based analysis of h1π such as the
Dyson-Schwinger equation and the partially quenched
ChPT. The former, for example, computes hadronic matrix
elements by evaluating “loop diagrams” of quark and
gluons with insertions of fully dressed vertices and propa-
gators obtained by solving integral equations. The dis-
appearance of the pion in the external state greatly reduces
the number of diagrams, in particular, those involving
contractions between the quarks in the nucleon and the
pion. The latter is able to isolate diagrams with specific
contractions in a given hadronic matrix element through

calculations of tree and loop diagrams in the ChPTwith an
extended flavor sector [65–67]. Based on our theorem, the
objects of interest are translated to baryon mass parameters,
so the number of loop diagrams is much smaller (which can
be seen from Fig. 1), making the calculation more tractable.
In summary, we demonstrate that the h1π , induced by

ΔI ¼ 1 parity-odd four-quark operators resulting from the
exchange of the Z boson as well as QCD running, can be
related to the neutron-proton mass splitting ðδmNÞ4q induced
by a corresponding set of ΔI ¼ 1, parity-even four-quark
operators. The matching relation is established as a soft-pion
theorem Fπh1π ¼ −ðδmNÞ4q=

ffiffiffi
2

p
, which is protected against

any correction of NLO in the chiral expansion. Therefore,
instead of h1π , one may study ðδmNÞ4q, which is a much
simpler hadronic matrix element due to the disappearance of
the pion from the external state. Such matching brings about
benefits to both lattice and other nonperturbative QCD
calculations of h1π . We hope that our finding could serve
as a new starting point for the next round of theoretical
investigations, which could be directly contrasted to the
upcoming experimental results, and thus shed new lights on
the many unresolved puzzles in hadronic weak interactions.
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