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Nonlinear response theory, in contrast to linear cases, involves (dynamical) details, and this makes
application to many-body systems challenging. From the microscopic starting point we obtain an exact
response theory for a small number of coarse-grained degrees of freedom. With it, an extrapolation scheme
uses near-equilibrium measurements to predict far-from-equilibrium properties (here, second order
responses). Because it does not involve system details, this approach can be applied to many-body
systems. It is illustrated in a four-state model and in the near critical Ising model.
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Understanding properties of nonequilibrium systems is
an ambitious goal of modern statistical physics [1], and
here, the fluctuation dissipation theorem (FDT) is of
fundamental importance: It relates the linear response of
a system to its thermal fluctuations in the equilibrium state
[2,3]. This insight is of practical benefit in solid-state
physics [4] as well as in classical systems.
The FDT holds close to equilibrium, and extending it to

far from equilibrium has been the subject of intense
research. The case of small perturbations of far-from-
equilibrium states has been analyzed in various works
[1,5–14]. Another direction aims at finding the nonlinear
response, i.e., the response to strong perturbations. The
derived formulas relate response functions to nonequili-
brium correlation functions [15–17], or to (higher order)
correlation functions evaluated in equilibrium [2,18–24].
The latter concept has been applied experimentally only
recently [25], where the second order response was
obtained from an equilibrium measurement.
Extensions of FDT to far-from-equilibrium cases are

typically plagued by a property, which is deeply inherent
to nonequilibrium physics: Their application requires
information about the interactions and dynamics of the
system, so that in principle all degrees of freedom (d.o.f.)
(or their nonequilibrium distributions) have to be tracked
during the measurement (see discussions in Refs. [1,24]).
This statement may be exemplified for colloidal particles,
investigated in Ref. [25]: To apply second order response
theory, the interaction potential of the particles and their
dynamical laws have to be known (and monitored). It is
this aspect of nonequilibrium response theory (the
dynamical details mentioned in the Abstract) which often
restricts its applicability to systems with small number

of d.o.f., and has prevented application to many-body
systems.
A general route for many-body systems identifies a

relevant subset of important (slow) d.o.f., and less relevant
(fast) degrees are integrated out. Examples are the so called
Mori-Zwanzig projection formalism [26–30] or Fokker-
Planck or Langevin equations [31,32]. When applying such
approaches to nonequilibrium cases, the integrated d.o.f.
are typically assumed to be in equilibrium.
In this Letter, we derive a response scheme which

overcomes these issues: Starting from the microscopic
description, we derive a nonlinear response relation for a
small subset of coarse-grained d.o.f., which is then used in
an extrapolation scheme: Measurements near equilibrium,
i.e., linear in perturbation, are used to predict responses
farther away from equilibrium, i.e., to second order in
perturbation. The microscopic degrees neither have to be
tracked nor are they assumed to be equilibrating fast, so
that this scheme is applicable to many-body systems. We
demonstrate applicability in an exactly solvable jump
process and in computer simulations of the 2D Ising model.
Coarse-grained nonlinear response theory from path

integrals.—We consider a classical many-body system
which is in weak contact with an equilibrium thermal bath.
Considering, for example, the Ising model (see below),
nonlinear response theory, as, e.g., given in Refs. [24,33],
can only be applied if the Hamiltonian (e.g., nearest- or next-
to-nearest neighbor interactions) and the dynamics (e.g.,
specific spin-flip rules) are known, and if all degrees are
tracked. Our goal is development of a nonlinear response
method which can be applied by tracking a small number of
d.o.f., e.g., the order parameter in the Ising model, not
necessitating knowledge about the details of the system.
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To this end, we introduce a coarse-grained description in
terms of n (experimentally trackable) macrostates, each
containing several, uniquely assigned microstates. At any
time t, the system is thus characterized by a unique
macrovariable Xt ¼ 0; 1;…; n − 1 (e.g., the sign of the
magnetization in the Ising model is described by two
macrostates, Xt ¼ 0, 1) which represents the coarse-
grained phase space. In the absence of perturbations, the
system is in thermal equilibrium, and thus satisfies detailed
balance and time-reversal symmetry.
We aim to compute the response of the system to a

perturbation, whose strength is quantified by the dimen-
sionless parameter ε. The perturbation can, for example, be
a force, an external field, or a change in the transition rates
of a jump process. We restrict here to perturbations which
are switched on at time t ¼ 0, but are otherwise time
independent. We build on path integrals, in terms of which
response theory has been worked out for the microsystem
[22,24,25]: The probability weight pðωÞ of a microscopic
path ω in the perturbed process differs from its equilibrium
weight peqðωÞ. This is captured by the action aðωÞ, i.e.,
pðωÞ ¼ e−aðωÞpeqðωÞ. a, which vanishes for ε ¼ 0, is
expanded in powers of ε,

a ¼ ε

�
d0 −

1

2
s0
�
þ 1

2
ε2d00 þOðε3Þ; ð1Þ

where the primes denote derivatives with respect to ε. In the
spirit of Refs. [11,22,24], a ¼ d − 1

2
s is split into a part that

is symmetric under time reversal d and an antisymmetric
part s. We take the perturbation to be such that s is linear in
ε, so that s00 and higher derivatives vanish, which is a
generic and useful case [1,11,34]. This may also be
interpreted as a definition of the order of perturbation: ε
is the quantity, in which s is linear. For a perturbation
via potential forces this means that the perturbation
Hamiltonian is linear in ε.
The response of an observable, up to second order, can

then be expressed in terms of equilibrium correlation
functions involving combinations of s0 and d0 [11,22,24]
[we will refer to the corresponding response formula when
introducing Eq. (6) below].
On the coarse-grained level the probability Pij of the

macropath, which connects X ¼ i at t ¼ 0 and X ¼ j at
time t [35], follows from integration over microstates, and
the corresponding macroaction Aij is [in the following, we
omit the time arguments for brevity, keeping in mind that,
e.g., Aij ¼ AijðtÞ]

Aij ≡ − log
Pij

Peq
ij
¼ − log

�
1

Peq
ij

Z
ij
dωpeqðωÞe−aðωÞ

�
: ð2Þ

Here,
R
ij denotes integration over only those micropaths ω

which connect the macrostates i (at t ¼ 0) and j (at time t).
Using the definition,

R
ij dωpeqðωÞ ¼ Peq

ij , the right-hand

side of Eq. (2) may be expanded in a series of ε, to obtain
the macroscopic analog of Eq. (1). For ε ¼ 0, the argument
of the log is unity, and we use its expansion around that
value to obtain, with the notation A ¼ D − 1

2
S,

S0
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ji−A0
ij¼

1
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ij

Z
ij
dωpeqðωÞs0ðωÞ;
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ij≡1
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Z
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S00
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ijÞ¼2D0

ijS
0
ij−

2
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ij

Z
ij
dωpeqðωÞd0s0: ð3Þ

The first derivatives, S0 and D0, are thus given in terms of
the microscopic counterparts, while, notably, the coarse
graining in general generates a finite S00 in the last line of
Eq. (3), although the microscopic counterpart s00 is zero.
The expected value of a macro-observableOðXÞ at time t

under the perturbation is given by the average over the
macroscopic paths. ExpandingA in powers of ε, we obtain,
up to second order in ε,

hOðXtÞi ¼
X
ij

PijOðjÞ ¼ hOðXÞieq þ ε
X
ij

S0
ijP

eq
ij OðjÞ

− ε2
X
ij

S0
ijD

0
ijP

eq
ij OðjÞ þ ε2

2

X
ij

S00
ijP

eq
ij OðjÞ:

ð4Þ
Here, h� � �i and h� � �ieq denote averages over the perturbed
and equilibrium processes, respectively. Other terms in this
expansion disappear because of time-reversal symmetry of
the equilibrium process, manifest here in the symmetry of
the matrix Peq

ij . The last term in Eq. (4) is not present in the
microscopic version [24], and it appears here because of the
nonvanishing S00 in Eq. (3). The extrapolation scheme
proposed below is applicable if the last term in Eq. (4)
vanishes. In particular, it is instructive to consider pertur-
bations which couple to the coarse-grained variable X. One
example is a perturbation potential εVðXÞ, i.e., a perturba-
tion potential which is sensitive to the macrostates. In that
case, s0ðωÞ ¼ β½VðX0Þ − VðXtÞ� [11], with inverse thermal
energy β ¼ ðkBTÞ−1. It is thus equal for all the micropaths
connecting macrostates i and j. Consequently, the term in
the last line of Eq. (3) simplifies to
Z
ij
dωpeqðωÞd0s0 ¼ S0

ij

Z
ij
dωpeqðωÞd0 ¼ S0

ijD
0
ijP

eq
ij : ð5Þ

It immediately follows that S00 ¼ 0 in Eq. (3), and, there-
fore, Eq. (4) simplifies to a form

hOðXtÞi ¼ hOðXÞieq þ ε
X
ij

S0
ijP

eq
ij OðjÞ

− ε2
X
ij

S0
ijD

0
ijP

eq
ij OðjÞ: ð6Þ
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Equation (6), an intermediate result, is the response formula
for the coarse-grained phase space X. It is reminiscent of
the microscopic version [24]; however, here we obtained it
for the coarse-grained variables. The left-hand side is the
nonequilibrium average ofOðXtÞ, while the right-hand side
is an explicit expression in terms of the time-dependent
matrices S0, D0, and Peq. Important for this work is the
interpretation of Eq. (6): It is worth appreciating that the
second order response, given by the last term of Eq. (6),
involves S0 andD0, which are the changes of these matrices
to linear order in ε. This leads to the main result of the
Letter: Measuring the linear response of the system, i.e.,
measuring S0 and D0, is sufficient to predict the second
order response from Eq. (6).
This extrapolation scheme neither relies on the knowl-

edge or tracking of integrated d.o.f. nor are they assumed to
equilibrate fast (in contrast to Zwanzig-Mori approaches),
and is thus applicable to many body systems with the
caveat that the linear response needs to be measured. We
illustrate the scheme in two examples.
Four-state jump process.—Let four microstates,

A;…; D, be connected with given jump rates; see sketch
in Fig. 1. The coarse-grained macrostates combine A, B
(X ¼ 0) and C, D (X ¼ 1), respectively, so that X is the
phase space of a two-state system (n ¼ 2), with hXieq ¼ 1

2

because of symmetry.
At time t ¼ 0, the system is perturbed by switching the

forward rate of the central link from 1 to eε, while all other
rates are left unchanged (see sketch in Fig. 1). Because we
perturb the link connecting the macrostates, Eq. (6) can be
used. We aim to find the responses up to the second order:

χ1ðtÞ≡ lim
ε→0

1

ε
½hOti − hOieq�; ð7aÞ

χ2ðtÞ≡ lim
ε→0

1

ε2
½hOti − εχ1ðtÞ − hOieq�: ð7bÞ

The response formula, Eq. (6), yields the predicted
responses χrf :

χrf1 ðtÞ ¼
X
ij

OðjÞS0
ijP

eq
ij ; ð8aÞ

χrf2 ðtÞ ¼ −
X
ij

OðjÞS0
ijD

0
ijP

eq
ij : ð8bÞ

Evaluating Eq. (8) in the extrapolation scheme, S0 and D0
need to be known. Therefore, the path weight PijðtÞ is
measured in linear response (for n ¼ 2, a 2 × 2 matrix).
Using Eqs. (2) and (3), one then obtains, by employing also
its equilibrium counterpart Peq

ij ðtÞ,

S0
ij ¼ lim

ε→0

1

ε
log

Pij

Pji
; ð9aÞ

D0
ij ¼ lim

ε→0

1

2ε
log

ðPeq
ij Þ2

PijPji
: ð9bÞ

The considered four-state process is exactly solvable
(see Supplemental Material [36]), and S0, D0, and Peq so
obtained are shown in Fig. 1(a). When applying the scheme
experimentally, these curves are to be measured.
In this example, we takeOðXÞ ¼ X; i.e., we consider the

response of hXi. The corresponding χrf are then found via
Eq. (8), which, using n ¼ 2, simplifies to

χrf1 ðtÞ ¼ S0
01P

eq
01; ð10aÞ

χrf2 ðtÞ ¼ −S0
01D

0
01P

eq
01: ð10bÞ

Since S0
ij is antisymmetric and we have n ¼ 2, the sums

reduce to the term 0 → 1, and the nontrivial second order is
the product of the functions shown in Fig. 1(a).
We show analytically [36] that Eq. (10b) indeed yields

the exact second order response, which, having coarse
grained a four-state to a two-state model, is an explicit
confirmation of the proposed scheme.
Figure 1(b) shows the resulting χ2 as a function of time

for an extreme choice of parameters: The rates A ↔ B and
C ↔ D are small compared to the rates B ↔ C. Because of
this, the density ρA relaxes much slower than ρB (inset), and
the χ2ðtÞ shows two distinct timescales. This demonstrates
that Eq. (6) relies neither on fast relaxation of integrated
degrees nor on Markovianity of the resulting two-state
system. For t → ∞, χ2 vanishes because of symmetries.
2D Ising model.—To demonstrate practical applicability,

we consider an Ising model on a periodic square lattice with
nearest-neighbor interactions among N spins si ¼ �1 and

(a) (b)

FIG. 1. Response in a coarse-grained four-state jump process as
a function of dimensionless time t after perturbing the center link,
for r ¼ 0.1. Microstates A and B are united to yield macrostate
X ¼ 0; C andD are merged to X ¼ 1. Panel (a) shows S0,D0, and
Peq, the quantities of Eq. (10b). (b) Second order response of hXi
[see Eq. (7b)]. The inset gives the probabilities ρA=B to find the
system in state A or B, respectively, as a function of time.
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following Metropolis dynamics [37], studied using
Monte Carlo simulations [38]. See Ref. [33] for nonlinear
response theory in the Ising model. The Hamiltonian

H ¼ −
X
fijg

sisj − h
XN
i¼1

si þ εΘðtÞ
XN
i¼1

si ð11Þ

is asymmetric due to the presence of a magnetic field h
(included to allow for a finite χ2). ε gives the strength of
perturbation which acts on N ≤ N spins, and the unit-step
function ΘðtÞ ¼ 0 if t < 0 and ΘðtÞ ¼ 1 otherwise. With
kB ¼ 1, h and temperature T are dimensionless. For h ¼ 0,
the 2D Ising model shows a paramagnet-ferromagnet
transition at temperature Tc ≃ 2.269 [39]. Our finite system
with a lattice of size N ¼ 16 × 16 and T ¼ 2.45 shows
ferromagnetic order, however randomly flipping collec-
tively the sign of the magnetizationm ¼ ð1=NÞPN

i¼1 si, on
a slow timescale.
For the macrovariable X ¼ PN

i¼1 si, corresponding to
n ¼ N þ 1 macrostates, the perturbation in Eq. (11) is of
the form VðXÞ [namely, VðXÞ ¼ X]. An extreme limit is a
local perturbation (N ¼ 1), where only a single tagged
spin is perturbed. Here, the interpolation scheme is applied
by only tracking (measuring) the dynamics of that tagged
spin (n ¼ 2), while the configuration of the surrounding
spins need not be known [40].
More challenging, we consider a global perturbation

(N ¼ N), aiming at the sign of the magnetization as the
chosen observable of interest, specifically, O ¼ ΘðmÞ.
With h ¼ 0.005, hOieq ≃ 0.613 in the equilibrium state.
Does one need N þ 1 ¼ 257 macrostates in this case?
Practically, a much smaller number turns out to be
sufficient. We use n ¼ 2, 4, and 6 (see sketch in Fig. 2),
ruling out odd values for symmetry.
In our simulations, we measure S0 and D0 with a small

value of ε ¼ 0.0005 using Eq. (9) [41]. This yields the
curves in Fig. 2(a) (for ease of presentation, we only show
the case n ¼ 2). The predicted second order response χrf2 ðtÞ
is then given by Eq. (8b), i.e., summing over the matrix
elements of S0, D0, and Peq. For n ¼ 2, this sum is given in
Eq. (10b), and contains only one term: It is the product of
the functions in Fig. 2(a). For larger n, more terms are
summed. This yields the curves in Fig. 2(b). We also
measured the second order response using the conventional
way [see Eq. (7b)], for which we have used a larger value of
ε ¼ 0.003; see the (blue) curve denoted “per” in Fig. 2(b).
The very good agreement in Fig. 2(b) confirms the main
claim of the Letter: We used simulations at ε ¼ 0 and
ε ¼ 0.0005, and obtained the nontrivial extrapolation to a
larger perturbation ε ¼ 0.003. As a practical aspect, the
conventional way of determining χ2 [using Eq. (7b)] needs
about 10 times the amount of computational effort to obtain
curves with similar statistics. The curves for different n
can only be distinguished in a logarithmic presentation

[Fig. 2(b) inset], where the long time limit, found in a static
measurement [36], is indeed approached better and better
for increasing n. We note that for other systems, the
convergence with n may be slower.
The scheme amounts to measuring transition rates

between the different values of X which are, in suitable
systems, obtained much more easily compared to the
measurements needed for microscopic response theory.
Once experimental trajectories are obtained, the transi-
tion rates can be evaluated for different n, so that larger
n’s do not necessarily require more experimental meas-
uring time.
Recapitulating, V ¼ VðXÞ is a sufficient condition for

accuracy of the proposed scheme. It means that unperturbed
d.o.f. can be coarse grained straightforwardly. In our
examples, these are the unperturbed links or spins, but, in
general, these can also include spatial or momentum d.o.f.
Practically, we noted that the condition V ¼ VðXÞ is not
necessary, so that much coarser descriptions as implied by
this condition can suffice. By testing convergence with n, the
accuracy of the method can be controlled. Because naturally
the obtained resolution for the observable is limited by the
number of macrostates, this approach is especially useful if
the behavior of a low dimensional observable is sought, such
as the order parameter of a (phase) transition.
The presented coarse graining and extrapolation scheme

constitute a conceptually new approach to nonlinear
response theory. Because microdegrees do not have to
be monitored, it has a large range of applicability in
complex systems. While circumventing the experimental

(a) (b)

FIG. 2. Top: Sketch of the macrostates of the order parameterm
for different n. Bottom: (a) S0

01 and D0
01 (exemplarily shown for

n ¼ 2), measured at ε ¼ 0.0005 along with Peq
01 as a function of

time t (in Monte Carlo steps). (b) Second order response. Open
symbols show χrf2 , found using Eq. (8b), for the different values
of n. The curve denoted “per” uses the conventional way [see
Eq. (7b)] of determining response functions for ε ¼ 0.003.
Horizontal dashed line gives the limit χst2 ¼ χ2ðt → ∞Þ [36].
The inset shows χ2 − χst2 (logarithmic scale). All curves are
obtained from averaging more than 108 trajectories.
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need of applying strong perturbations, the scheme can also
be more efficient regarding computation time compared to
the traditional way of obtaining response functions, which
is of additional advantage for slow systems. We note that at
any order of perturbation, the response formula contains the
change of D in at most one order lower, so that we expect
the extrapolation to be extendable beyond second order.
Future work will investigate time-dependent perturba-

tions, and perturbations via nonconservative force fields.
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